The Bacterial Transcription Termination Factor Rho Coordinates Mg(2+) Homeostasis with Translational Signals.
Ontology highlight
ABSTRACT: The bacterial protein Rho triggers transcription termination at the ends of many operons and when transcription and translation become uncoupled. In addition to these genome wide activities, Rho implements regulation of specific genes by dictating whether RNA polymerase terminates transcription within the 5' leader region or continues into the downstream coding region. Here, we report that the Mg(2+) channel gene corA in Salmonella enterica serovar Typhimurium, which was previously thought to be constitutively expressed, is regulated by a Rho-dependent terminator located within its 5' leader region. We demonstrate that the unusually long and highly conserved corA leader mRNA can adopt two mutually exclusive conformations that determine whether or not Rho interacts with a Rho utilization site on the nascent RNA and thereby prevents transcription of the corA coding region. The RNA conformation that promotes Rho-dependent termination is favored by efficient translation of corL, a short open reading frame located within the corA leader. Thus, corA transcription is inversely coupled to corL translation. This mechanism resembles those governing expression of Salmonella's other two Mg(2+) transport genes, suggesting that Rho links Mg(2+) uptake to translational signals.
SUBMITTER: Kriner MA
PROVIDER: S-EPMC4964609 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA