Project description:Cell-to-cell communication is a fundamental mechanism for coordinating developmental and physiological events in multicellular organisms. Heterotrimeric G proteins are key molecules that transmit extracellular signals; similarly, CLAVATA signaling is a crucial regulator in plant development. Here, we show that Arabidopsis thaliana G? mutants exhibit an enlarged stem cell region, which is similar to that of clavata mutants. Our genetic and cell biological analyses suggest that the G protein beta-subunit1 AGB1 and RPK2, one of the major CLV3 peptide hormone receptors, work synergistically in stem cell homeostasis through their physical interactions. We propose that AGB1 and RPK2 compose a signaling module to facilitate meristem development.
Project description:The CLAVATA1 (CLV1) receptor kinase regulates stem cell specification at shoot and flower meristems of Arabidopsis. Most clv1 alleles are dominant negative, and clv1 null alleles are weak in phenotype, suggesting additional receptors functioning in parallel. We have identified two such parallel receptors, BAM1 and BAM2. We show that the weak nature of the phenotype of clv1 null alleles is dependent on BAM activity, with bam clv mutants exhibiting severe defects in stem cell specification. Furthermore, BAM activity in the meristem depends on CLV2, which is required in part for CLV1 function. In addition, clv1 mutants enhance many of the Bam(-) organ phenotypes, indicating that, contrary to current understanding, CLV1 function is not specific to the meristem. CLV3 encodes a small, secreted peptide that acts as the ligand for CLV1. Mutations in clv3 lead to increased stem cell accumulation. Surprisingly, bam1 and bam2 mutants suppress the phenotype of clv3 mutants. We speculate that in addition to redundant function in the meristem center, BAM1 and BAM2 act to sequester CLV3-like ligands in the meristem flanks.
Project description:A central unanswered question in stem cell biology, both in plants and in animals, is how the spatial organization of stem cell niches are maintained as cells move through them. We address this question for the shoot apical meristem (SAM) which harbors pluripotent stem cells responsible for growth of above-ground tissues in flowering plants. We find that localized perception of the plant hormone cytokinin establishes a spatial domain in which cell fate is respecified through induction of the master regulator WUSCHEL as cells are displaced during growth. Cytokinin-induced WUSCHEL expression occurs through both CLAVATA-dependent and CLAVATA-independent pathways. Computational analysis shows that feedback between cytokinin response and genetic regulators predicts their relative patterning, which we confirm experimentally. Our results also may explain how increasing cytokinin concentration leads to the first steps in reestablishing the shoot stem cell niche in vitro.
Project description:Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis and replenishing lost cells in response to tissue damage. Here we demonstrate that the Hippo (Hpo) signaling pathway, an evolutionarily conserved pathway implicated in organ size control and tumorigenesis, plays an essential role in regulating ISC proliferation. Loss of Hpo signaling in either midgut precursor cells or epithelial cells stimulates ISC proliferation. We provide evidence that loss of Hpo signaling in epithelial cells increases the production of cytokines of the Upd family and multiple EGFR ligands that activate JAK-STAT and EGFR signaling pathways in ISCs to stimulate their proliferation, thus revealing a unique non-cell-autonomous role of Hpo signaling in blocking ISC proliferation. Finally, we show that the Hpo pathway mediator Yorkie (Yki) is also required in precursor cells for injury-induced ISC proliferation in response to tissue-damaging reagent DSS.
Project description:Neural stem cell (NSC) proliferation and differentiation in the developing brain is a complex process precisely regulated by intrinsic and extrinsic signals. Although epigenetic modification has been reportedly involved in the regulation of the cerebral cortex, whether UTX, an H3K27me3 demethylase, regulates the development of cerebral cortex during the embryonic period is unclear. In this study, we demonstrate that Utx deficiency by knockdown and conditional knockout increases NSC proliferation and decreases terminal mitosis and neuronal differentiation. Furthermore, we find that impairment of cortical development caused by lack of Utx is less significant in males than in females. In addition, UTX demethylates H3K27me3 at the Pten promoter and promotes Pten expression. P-AKT and P-mTOR levels are increased in the Utx conditional knockout cortices. Finally, Utx or Pten overexpression can rescue the impairment of brain development caused by Utx loss. These findings may provide important clues toward deciphering brain diseases.
Project description:The Arabidopsis shepherd (shd) mutant shows expanded shoot apical meristems (SAM) and floral meristems (FM), disorganized root apical meristems, and defects in pollen tube elongation. We have discovered that SHD encodes an ortholog of GRP94, an ER-resident HSP90-like protein. Since the shd phenotypes in SAM and FM are similar to those of the clavata (clv) mutants, we have explored the possibility that CLV complex members could be SHD targets. The SAM and FM morphology of shd clv double mutants are indistinguishable from those of clv single mutants, and the wuschel (wus) mutation is completely epistatic to the shd mutation, indicating that SHD and CLV act in the same genetic pathway to suppress WUS function. Moreover, the effects of CLV3 overexpression that result in the elimination of SAM activity were abolished in the shd mutant, indicating that CLV function is dependent on SHD function. Therefore, we conclude that the SHD protein is required for the correct folding and/or complex formation of CLV proteins.
Project description:Mechanisms underlying anteroposterior body axis differences during adult tissue maintenance and regeneration are poorly understood. Here, we identify that post-translational modifications through the SUMO (Small Ubiquitin-like Modifier) machinery are evolutionarily conserved in the Lophotrocozoan Schmidtea mediterranea. Disruption of SUMOylation in adult animals by RNA-interference of the only SUMO E2 conjugating enzyme Ubc9 leads to a systemic increase in DNA damage and a remarkable regional defect characterized by increased cell death and loss of the posterior half of the body. We identified that Ubc9 is mainly expressed in planarian stem cells (neoblasts) but it is also transcribed in differentiated cells including neurons. Regeneration in Ubc9(RNAi) animals is impaired and associated with low neoblast proliferation. We present evidence indicating that Ubc9-induced regional cell death is preceded by alterations in transcription and spatial expression of repressors and activators of the Hedgehog signaling pathway. Our results demonstrate that SUMOylation acts as a regional-specific cue to regulate cell fate during tissue renewal and regeneration.
Project description:Capicua (Cic) is a transcriptional repressor mutated in the brain cancer oligodendroglioma. Despite its cancer link, little is known of Cic's function in the brain. We show that nuclear Cic expression is strongest in astrocytes and neurons but weaker in stem cells and oligodendroglial lineage cells. Using a new conditional Cic knockout mouse, we demonstrate that forebrain-specific Cic deletion increases proliferation and self-renewal of neural stem cells. Furthermore, Cic loss biases neural stem cells toward glial lineage selection, expanding the pool of oligodendrocyte precursor cells (OPCs). These proliferation and lineage effects are dependent on de-repression of Ets transcription factors. In patient-derived oligodendroglioma cells, CIC re-expression or ETV5 blockade decreases lineage bias, proliferation, self-renewal, and tumorigenicity. Our results identify Cic as an important regulator of cell fate in neurodevelopment and oligodendroglioma, and suggest that its loss contributes to oligodendroglioma by promoting proliferation and an OPC-like identity via Ets overactivity.
Project description:In Arabidopsis, the floral meristem is essential for the production of floral organs. The floral meristem is initially maintained to contribute cells for floral organ formation. However, this stem cell activity needs be completely terminated at a certain floral developmental stage to ensure the proper development of floral reproductive organs. Here, we have reviewed recent findings on the complex regulation of floral meristem activities, which involve signaling cascades, transcriptional regulation, epigenetic mechanisms and hormonal control for floral meristem determinacy in Arabidopsis.
Project description:Parathyroid hormone (PTH) is a key regulator of skeletal physiology and calcium and phosphate homeostasis. It acts on bone and kidney to stimulate bone turnover, increase the circulating levels of 1,25 dihydroxyvitamin D and calcium and inhibit the reabsorption of phosphate from the glomerular filtrate. Dysregulated PTH actions contribute to or are the cause of several endocrine disorders. This calciotropic hormone exerts its actions via binding to the PTH/PTH-related peptide receptor (PTH1R), which couples to multiple heterotrimeric G proteins, including Gs and Gq/11 Genetic mutations affecting the activity or expression of the alpha-subunit of Gs, encoded by the GNAS complex locus, are responsible for several human diseases for which the clinical findings result, at least partly, from aberrant PTH signaling. Here, we review the bone and renal actions of PTH with respect to the different signaling pathways downstream of these G proteins, as well as the disorders caused by GNAS mutations.