ABSTRACT: The increasing dengue burden and epidemic severity worldwide have highlighted the need to improve surveillance. In non-endemic areas such as Taiwan, where outbreaks start mostly with imported cases from Southeast Asia, a closer examination of surveillance dynamics to detect cases early is necessary. To evaluate problems with dengue surveillance and investigate the involvement of different factors at various epidemic stages, we investigated 632 laboratory-confirmed indigenous dengue cases in Kaohsiung City, Taiwan during 2009-2010. The estimated sensitivity of clinical surveillance was 82.4% (521/632). Initially, the modified serological surveillance (targeting only the contacts of laboratory-confirmed dengue cases) identified clinically unrecognized afebrile cases in younger patients who visited private clinics and accounted for 30.4% (35/115) of the early-stage cases. Multivariate regression indicated that hospital/medical center visits [Adjusted Odds Ratio (aOR): 11.6, 95% confidence interval (CI): 6.3-21.4], middle epidemic stage [aOR: 2.4 (1.2-4.7)], fever [aOR: 2.3 (2.3-12.9)], and musculo-articular pain [aOR: 1.9 (1.05-3.3)] were significantly associated with clinical reporting. However, cases with pruritus/rash [aOR: 0.47 (0.26-0.83)] and diarrhea [aOR: 0.47 (0.26-0.85)] were underreported. In conclusion, multiple factors contributed to dengue surveillance problems. To prevent a large-scale epidemic and minimize severe dengue cases, there is a need for integrated surveillance incorporating entomological, clinical, serological, and virological surveillance systems to detect early cases, followed by immediate prevention and control measures and continuous evaluation to ensure effectiveness. This effort will be particularly important for an arbovirus, such as Zika virus, with a high asymptomatic infection ratio. For dengue- non-endemic countries, we recommend serological surveillance be implemented in areas with high Aedes mosquito indices or many breeding sites. Syndromic surveillance, spatial analysis and monitoring changes in epidemiological characteristics using a geographical information system, as well as epidemic prediction models involving epidemiological, meteorological and environmental variables will be helpful for early risk communication to increase awareness.