Conservation and divergence within the clathrin interactome of Trypanosoma cruzi.
Ontology highlight
ABSTRACT: Trypanosomatids are parasitic protozoa with a significant burden on human health. African and American trypanosomes are causative agents of Nagana and Chagas disease respectively, and speciated about 300?million years ago. These parasites have highly distinct life cycles, pathologies, transmission strategies and surface proteomes, being dominated by the variant surface glycoprotein (African) or mucins (American) respectively. In African trypanosomes clathrin-mediated trafficking is responsible for endocytosis and post-Golgi transport, with several mechanistic aspects distinct from higher organisms. Using clathrin light chain (TcCLC) and EpsinR (TcEpsinR) as affinity handles, we identified candidate clathrin-associated proteins (CAPs) in Trypanosoma cruzi; the cohort includes orthologs of many proteins known to mediate vesicle trafficking, but significantly not the AP-2 adaptor complex. Several trypanosome-specific proteins common with African trypanosomes, were also identified. Fluorescence microscopy revealed localisations for TcEpsinR, TcCLC and TcCHC at the posterior region of trypomastigote cells, coincident with the flagellar pocket and Golgi apparatus. These data provide the first systematic analysis of clathrin-mediated trafficking in T. cruzi, allowing comparison between protein cohorts and other trypanosomes and also suggest that clathrin trafficking in at least some life stages of T. cruzi may be AP-2-independent.
SUBMITTER: Kalb LC
PROVIDER: S-EPMC4977521 | biostudies-literature | 2016 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA