Ontology highlight
ABSTRACT: Background
Whether during spontaneous breathing arterial pressure variations (APV) can detect a volume deficit is not established. We hypothesized that amplification of intra-thoracic pressure oscillations by breathing through resistors would enhance APV to allow identification of a reduced cardiac output (CO). This study tested that hypothesis in healthy volunteers exposed to central hypovolemia by head-up tilt.Methods
Thirteen healthy volunteers were exposed to central hypovolemia by 45° head-up tilt while breathing through a facemask with 7.5 cmH2O inspiratory and/or expiratory resistors. A brachial arterial catheter was used to measure blood pressure and thus systolic pressure variation (SPV), pulse pressure variation and stroke volume variation . Pulse contour analysis determined stroke volume (SV) and CO and we evaluated whether APV could detect a 10 % decrease in CO.Results
During head-up tilt SV decreased form 91 (±46) to 55 (±24) mL (mean ± SD) and CO from 5.8 (±2.9) to 4.0 (±1.8) L/min (p < 0.05), while heart rate increased (65 (±11) to 75 (±13) bpm; P < 0.05). Systolic pressure decreased from 127 (±14) to 121 (±13) mmHg during head-up tilt, while SPV tended to increase (from 21 (±15)% to 30 (±13)%). Yet during head-up tilt, a SPV ≥ 37 % predicted a decrease in CO ≥ 10 % with a sensitivity and specificity of 78 % and 100 %, respectively.Conclusion
In spontaneously breathing healthy volunteers combined inspiratory and expiratory resistors enhance SPV during head-up tilted induced central hypovolemia and allow identifying a 10 % reduction in CO. Applying inspiratory and expiratory resistors might detect a fluid deficit in spontaneously breathing patients.Trial registration
ClinicalTrials.gov number NCT02549482 Registered September 10(th) 2015.
SUBMITTER: Dahl M
PROVIDER: S-EPMC4982018 | biostudies-literature | 2016 Aug
REPOSITORIES: biostudies-literature
Dahl Michael M Hayes Chris C Steen Rasmussen Bodil B Larsson Anders A Secher Niels H NH
BMC anesthesiology 20160811 1
<h4>Background</h4>Whether during spontaneous breathing arterial pressure variations (APV) can detect a volume deficit is not established. We hypothesized that amplification of intra-thoracic pressure oscillations by breathing through resistors would enhance APV to allow identification of a reduced cardiac output (CO). This study tested that hypothesis in healthy volunteers exposed to central hypovolemia by head-up tilt.<h4>Methods</h4>Thirteen healthy volunteers were exposed to central hypovole ...[more]