Unknown

Dataset Information

0

A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking.


ABSTRACT: The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob-associated histidine-rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether-like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely ?-helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.

SUBMITTER: McHugh E 

PROVIDER: S-EPMC4987487 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking.

McHugh Emma E   Batinovic Steven S   Hanssen Eric E   McMillan Paul J PJ   Kenny Shannon S   Griffin Michael D W MD   Crawford Simon S   Trenholme Katharine R KR   Gardiner Donald L DL   Dixon Matthew W A MW   Tilley Leann L  

Molecular microbiology 20150925 6


The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft c  ...[more]

Similar Datasets

| S-EPMC4111544 | biostudies-literature
| S-EPMC7078486 | biostudies-literature
| S-EPMC5099922 | biostudies-literature
| S-EPMC9159051 | biostudies-literature
| S-EPMC2928308 | biostudies-literature
| S-EPMC5738903 | biostudies-literature
| S-EPMC3209067 | biostudies-literature
| S-EPMC5963095 | biostudies-literature
| S-EPMC10349383 | biostudies-literature
| S-EPMC5829233 | biostudies-literature