Pleiotropic action of CpG-ODN on endothelium and macrophages attenuates angiogenesis through distinct pathways.
Ontology highlight
ABSTRACT: There is an integral relationship between vascular cells and leukocytes in supporting healthy tissue homeostasis. Furthermore, activation of these two cellular components is key for tissue repair following injury. Toll-like receptors (TLRs) play a role in innate immunity defending the organism against infection, but their contribution to angiogenesis remains unclear. Here we used synthetic TLR9 agonists, cytosine-phosphate-guanosine oligodeoxynucleotides (CpG-ODN), to investigate the role of TLR9 in vascular pathophysiology and identify potential therapeutic translation. We demonstrate that CpG-ODN stimulates inflammation yet inhibits angiogenesis. Regulation of angiogenesis by CpG-ODN is pervasive and tissue non-specific. Further, we noted that synthetic CpG-ODN requires backbone phosphorothioate but not TLR9 activation to render and maintain endothelial stalk cells quiescent. CpG-ODN pre-treated endothelial cells enhance macrophage migration but restrain pericyte mobilisation. CpG-ODN attenuation of angiogenesis, however, remains TLR9-dependent, as inhibition is lost in TLR9 deficient mice. Additionally, CpG-ODNs induce an M1 macrophage phenotype that restricts angiogenesis. The effects mediated by CpG-ODNs can therefore modulate both endothelial cells and macrophages through distinct pathways, providing potential therapeutic application in ocular vascular disease.
SUBMITTER: Wu J
PROVIDER: S-EPMC4997267 | biostudies-literature | 2016 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA