Unknown

Dataset Information

0

A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode.


ABSTRACT: Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (?-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr(4+) ions from ZrO2 UL and Sn(4+) ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800?°C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130?mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1?M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes.

SUBMITTER: Shinde PS 

PROVIDER: S-EPMC5006030 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode.

Shinde Pravin S PS   Lee Su Yong SY   Choi Sun Hee SH   Lee Hyun Hwi HH   Ryu Jungho J   Jang Jum Suk JS  

Scientific reports 20160831


Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-co  ...[more]

Similar Datasets

| S-EPMC6273716 | biostudies-literature
| S-EPMC8231785 | biostudies-literature
| S-EPMC5651939 | biostudies-literature
| S-EPMC7181208 | biostudies-literature
| S-EPMC6981678 | biostudies-literature
| S-EPMC8154601 | biostudies-literature
| S-EPMC4505112 | biostudies-literature
| S-EPMC10683552 | biostudies-literature
| S-EPMC8399771 | biostudies-literature
| S-EPMC3522739 | biostudies-literature