Unknown

Dataset Information

0

Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1.


ABSTRACT: Epigenetic regulation by SIRT1, a multifaceted NAD+-dependent protein deacetylase, is one of the most common factors modulating cellular processes in a broad range of diseases, including prostate cancer (CaP). SIRT1 is over-expressed in CaP cells, however the associated mechanism is not well understood. To identify whether specific microRNAs might mediate this linkage, we have screened a miRNA library for differential expression in ERG-associated CaP tissues. Of 20 differentially and significantly expressed miRNAs that distinguish ERG-positive tumors from ERG-negative tumors, we find miR-449a is highly suppressed in ERG-positive tumors. We establish that SIRT1 is a direct target of miR-449a and is also induced by ERG in ERG-associated CaP. Our data suggest that attenuation of miR-449a promotes the invasive phenotype of the ERG-positive CaP in part by inducing the expression of SIRT1 in prostate cancer cells. Furthermore, we also find that suppression of SIRT1 results in a significant reduction in ERG expression in ERG-positive CaP cells, indicating a feed-back regulatory loop associated with ERG, miR-449a and SIRT1. We also report that ERG suppresses p53 acetylation perhaps through miR-449a-SIRT1 axis in CaP cells. Our findings provide new insight into the function of miRNAs in regulating ERG-associated CaP. Thus, miR-449a activation or SIRT1 suppression may represent new therapeutic opportunity for ERG-associated CaP.

SUBMITTER: Kumar P 

PROVIDER: S-EPMC5008401 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1.

Kumar Parameet P   Sharad Shashwat S   Petrovics Gyorgy G   Mohamed Ahmed A   Dobi Albert A   Sreenath Taduru L TL   Srivastava Shiv S   Biswas Roopa R  

Oncotarget 20160401 16


Epigenetic regulation by SIRT1, a multifaceted NAD+-dependent protein deacetylase, is one of the most common factors modulating cellular processes in a broad range of diseases, including prostate cancer (CaP). SIRT1 is over-expressed in CaP cells, however the associated mechanism is not well understood. To identify whether specific microRNAs might mediate this linkage, we have screened a miRNA library for differential expression in ERG-associated CaP tissues. Of 20 differentially and significant  ...[more]

Similar Datasets

| S-EPMC5504971 | biostudies-other
| S-EPMC7975324 | biostudies-literature
| S-EPMC3049582 | biostudies-literature
| S-EPMC4951339 | biostudies-literature
| S-EPMC6692615 | biostudies-literature
| S-EPMC4356344 | biostudies-literature
| S-EPMC3897978 | biostudies-literature
| S-EPMC9442005 | biostudies-literature
| S-EPMC5355307 | biostudies-literature
| S-EPMC2952964 | biostudies-literature