Unknown

Dataset Information

0

Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9.


ABSTRACT: The CRISPR/Cas system is an efficient genome-editing tool to modify genes in mouse zygotes. However, only the Streptococcus pyogenes Cas9 (SpCas9) has been systematically tested for generating gene-modified mice. The protospacer adjacent motif (PAM, 5'-NGG-3') recognized by SpCas9 limits the number of potential target sites for this system. Staphylococcus aureus Cas9 (SaCas9), with its smaller size and unique PAM (5'-NNGRRT-3') preferences, presents an alternative for genome editing in zygotes. Here, we showed that SaCas9 could efficiently and specifically edit the X-linked gene Slx2 and the autosomal gene Zp1 in mouse zygotes. SaCas9-mediated disruption of the tyrosinase (Tyr) gene led to C57BL/6J mice with mosaic coat color. Furthermore, multiplex targeting proved efficient multiple genes disruption when we co-injected gRNAs targeting Slx2, Zp1, and Tyr together with SaCas9 mRNA. We were also able to insert a Flag tag at the C-terminus of histone H1c, when a Flag-encoding single-stranded DNA oligo was co-introduced into mouse zygotes with SaCas9 mRNA and the gRNA. These results indicate that SaCas9 can specifically cleave the target gene locus, leading to successful gene knock-out and precise knock-in in mouse zygotes, and highlight the potential of using SaCas9 for genome editing in preimplantation embryos and producing gene-modified animal models.

SUBMITTER: Zhang X 

PROVIDER: S-EPMC5009317 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9.

Zhang Xiya X   Liang Puping P   Ding Chenhui C   Zhang Zhen Z   Zhou Jianwen J   Xie Xiaowei X   Huang Rui R   Sun Ying Y   Sun Hongwei H   Zhang Jinran J   Xu Yanwen Y   Songyang Zhou Z   Huang Junjiu J  

Scientific reports 20160902


The CRISPR/Cas system is an efficient genome-editing tool to modify genes in mouse zygotes. However, only the Streptococcus pyogenes Cas9 (SpCas9) has been systematically tested for generating gene-modified mice. The protospacer adjacent motif (PAM, 5'-NGG-3') recognized by SpCas9 limits the number of potential target sites for this system. Staphylococcus aureus Cas9 (SaCas9), with its smaller size and unique PAM (5'-NNGRRT-3') preferences, presents an alternative for genome editing in zygotes.  ...[more]

Similar Datasets

| S-EPMC4393360 | biostudies-literature
| S-EPMC3814358 | biostudies-literature
| S-EPMC4881040 | biostudies-literature
| S-EPMC10997048 | biostudies-literature
| S-EPMC4670267 | biostudies-literature
| S-EPMC6934616 | biostudies-literature
| S-EPMC6874295 | biostudies-literature
| S-EPMC7430721 | biostudies-literature
| S-EPMC4976241 | biostudies-literature
| S-EPMC4853708 | biostudies-literature