Unknown

Dataset Information

0

The lasso for high dimensional regression with a possible change point.


ABSTRACT: We consider a high dimensional regression model with a possible change point due to a covariate threshold and develop the lasso estimator of regression coefficients as well as the threshold parameter. Our lasso estimator not only selects covariates but also selects a model between linear and threshold regression models. Under a sparsity assumption, we derive non-asymptotic oracle inequalities for both the prediction risk and the l1-estimation loss for regression coefficients. Since the lasso estimator selects variables simultaneously, we show that oracle inequalities can be established without pretesting the existence of the threshold effect. Furthermore, we establish conditions under which the estimation error of the unknown threshold parameter can be bounded by a factor that is nearly n-1 even when the number of regressors can be much larger than the sample size n. We illustrate the usefulness of our proposed estimation method via Monte Carlo simulations and an application to real data.

SUBMITTER: Lee S 

PROVIDER: S-EPMC5014306 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

The lasso for high dimensional regression with a possible change point.

Lee Sokbae S   Seo Myung Hwan MH   Shin Youngki Y  

Journal of the Royal Statistical Society. Series B, Statistical methodology 20150215 1


We consider a high dimensional regression model with a possible change point due to a covariate threshold and develop the lasso estimator of regression coefficients as well as the threshold parameter. Our lasso estimator not only selects covariates but also selects a model between linear and threshold regression models. Under a sparsity assumption, we derive non-asymptotic oracle inequalities for both the prediction risk and the l1-estimation loss for regression coefficients. Since the lasso est  ...[more]

Similar Datasets

| S-EPMC7868060 | biostudies-literature
| S-EPMC6454442 | biostudies-literature
| S-EPMC5571889 | biostudies-literature
| S-EPMC9365063 | biostudies-literature
| S-EPMC6193274 | biostudies-literature
| S-EPMC4390452 | biostudies-literature
| S-EPMC4627720 | biostudies-literature
| S-EPMC7500493 | biostudies-literature
| S-EPMC7313320 | biostudies-literature
| S-EPMC3767535 | biostudies-literature