Unknown

Dataset Information

0

Myosin-10 independently influences mitotic spindle structure and mitotic progression.


ABSTRACT: The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.

SUBMITTER: Sandquist JC 

PROVIDER: S-EPMC5017926 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Myosin-10 independently influences mitotic spindle structure and mitotic progression.

Sandquist Joshua C JC   Larson Matthew E ME   Hine Ken J KJ  

Cytoskeleton (Hoboken, N.J.) 20160622 7


The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The My  ...[more]

Similar Datasets

| S-EPMC2447898 | biostudies-literature
| S-EPMC10881153 | biostudies-literature
| S-EPMC5839792 | biostudies-other
| S-EPMC4013160 | biostudies-literature
| S-EPMC5755688 | biostudies-literature
| S-EPMC3434549 | biostudies-literature
| S-EPMC3882790 | biostudies-literature
| S-EPMC4489650 | biostudies-literature
| S-EPMC3116664 | biostudies-literature
| S-EPMC7353144 | biostudies-literature