Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase.
Ontology highlight
ABSTRACT: The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called ? appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the ?(70) subunit of RNAP. We have developed a holistic, structure-based model for ? appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /?(70) Region 4, the N-terminal domain of MotA [MotA(NTD)], and the C-terminal domain of MotA [MotA(CTD)]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects ?, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the ? subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs ? appropriation.
SUBMITTER: James TD
PROVIDER: S-EPMC5027511 | biostudies-literature | 2016 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA