A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/(131)I-antiAFPMcAb-GCV/MFH.
Ontology highlight
ABSTRACT: Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/(131)I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43?°C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200??Ci (131)I for 24?hours, indicating that the dose of 200??Ci might be the optimal dose for irradiation and 24?h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/(131)I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.
SUBMITTER: Lin M
PROVIDER: S-EPMC5027595 | biostudies-literature | 2016 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA