Unknown

Dataset Information

0

MALDI-TOF-MS reveals differential N-linked plasma- and IgG-glycosylation profiles between mothers and their newborns.


ABSTRACT: During pregnancy, the mother provides multiple nutrients and substances to the foetus, with maternal immunoglobulin G (IgG) being actively transported to the foetus. Newborns depend on maternal IgG for immune-protection in their first months. The glycosylation of IgG has been shown to influence its dynamics, e.g. receptor binding. While minor differences in IgG glycosylation have been found between IgG derived from maternal blood and umbilical cord blood (UC) of newborn children, the differential glycosylation of maternal and UC plasma has hitherto not been studied. Here, we studied the N-glycosylation of IgG and total plasma proteome of both maternal and UC plasma of 42 pairs of mothers and newborn children. A total of 37 N-glycans were quantified for IgG and 45 for the total plasma N-glycome (TPNG). The study showed slightly higher levels of galactosylation for UC IgG than maternal IgG, confirming previous results, as well as lower bisection and sialylation. Furthermore, the TPNG results showed lower values for galactosylation and sialylation, and higher values for fucosylation in the UC plasma. In conclusion, this study presents some novel insights into IgG glycosylation differences as well as the first broad overview of the differential plasma glycosylation between mothers and newborns.

SUBMITTER: Jansen BC 

PROVIDER: S-EPMC5036037 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

MALDI-TOF-MS reveals differential N-linked plasma- and IgG-glycosylation profiles between mothers and their newborns.

Jansen Bas C BC   Bondt Albert A   Reiding Karli R KR   Scherjon Sicco A SA   Vidarsson Gestur G   Wuhrer Manfred M  

Scientific reports 20160926


During pregnancy, the mother provides multiple nutrients and substances to the foetus, with maternal immunoglobulin G (IgG) being actively transported to the foetus. Newborns depend on maternal IgG for immune-protection in their first months. The glycosylation of IgG has been shown to influence its dynamics, e.g. receptor binding. While minor differences in IgG glycosylation have been found between IgG derived from maternal blood and umbilical cord blood (UC) of newborn children, the differentia  ...[more]

Similar Datasets

| S-EPMC5028741 | biostudies-literature
| S-EPMC5953179 | biostudies-literature
| S-EPMC2941831 | biostudies-literature
| S-EPMC6692339 | biostudies-literature
| S-EPMC6069833 | biostudies-other
| S-EPMC6135756 | biostudies-literature
| S-EPMC3371254 | biostudies-literature
| S-EPMC7200911 | biostudies-literature
| S-EPMC8264446 | biostudies-literature
| S-EPMC6881316 | biostudies-literature