Project description:Zika virus (ZIKV) is a mosquito-borne pathogen that caused a large outbreak in the Americas in 2015 and 2016. The virus is currently present in tropical areas around the globe and can cause severe disease in humans, including Guillain-Barré syndrome and congenital microcephaly. The tropical yellow fever mosquito, Aedes aegypti, is the main vector in the urban transmission cycles of ZIKV. The discovery of ZIKV in wild-caught Culex mosquitoes and the ability of Culex quinquefasciatus mosquitoes to transmit ZIKV in the laboratory raised the question of whether the common house mosquito Culex pipiens, which is abundantly present in temperate regions in North America, Asia and Europe, could also be involved in ZIKV transmission. In this study, we investigated the vector competence of Cx. pipiens (biotypes molestus and pipiens) from the Netherlands for ZIKV, using Usutu virus as a control. After an infectious blood meal containing ZIKV, none of the tested mosquitoes accumulated ZIKV in the saliva, although 2% of the Cx. pipiens pipiens mosquitoes showed ZIKV-positive bodies. To test the barrier function of the mosquito midgut on virus transmission, ZIKV was forced into Cx. pipiens mosquitoes by intrathoracic injection, resulting in 74% (molestus) and 78% (pipiens) ZIKV-positive bodies. Strikingly, 14% (molestus) and 7% (pipiens) of the tested mosquitoes accumulated ZIKV in the saliva after injection. This is the first demonstration of ZIKV accumulation in the saliva of Cx. pipiens upon forced infection. Nevertheless, a strong midgut barrier restricted virus dissemination in the mosquito after oral exposure and we, therefore, consider Cx. pipiens as a highly inefficient vector for ZIKV.
Project description:Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) and Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquitoes in urban and semi-urban environments, causing the increasing resistance of mosquitoes to commercial insecticides. In this study, 27 curcuminoids and monocarbonyl curcumin derivatives were synthesised and evaluated as potential larvicidal agents against Cx. pipiens and Ae. albopictus. Most of the compounds were more effective against larvae of both mosquito species. Four of the tested compounds, curcumin, demethoxycurcumin, curcumin-BF2 complex and a monocarbonyl tetramethoxy curcumin derivative exhibited high activity against both species. In Cx. pipiens the recorded LC50 values were 6.0, 9.4, 5.0 and 32.5 ppm, respectively, whereas in Ae. albopictus they exhibited LC50 values of 9.2, 36.0, 5.5 and 23.6 ppm, respectively. No conclusive structure activity relationship was evident from the results and the variety of descriptors values generated in silico provided some insight to this end.
Project description:Understanding the population structure and mechanisms of taxa diversification is important for organisms responsible for the transmission of human diseases. Two vectors of West Nile virus, Culex pipiens pipiens and Cx. p. molestus, exhibit epidemiologically important behavioral and physiological differences, but the whole-genome divergence between them was unexplored. The goal of this study is to better understand the level of genomic differentiation and population structures of Cx. p. pipiens and Cx. p. molestus from different continents. We sequenced and compared the whole genomes of 40 individual mosquitoes from two locations in Eurasia and two in North America. Principal Component, ADMIXTURE, and neighbor joining analyses of the nuclear genomes identified two major intercontinental, monophyletic clusters of Cx. p. pipiens and Cx. p. molestus. The level of genomic differentiation between the subspecies was uniform along chromosomes. The ADMIXTURE analysis determined signatures of admixture in Cx. p. pipens populations but not in Cx. p. molestus populations. Comparison of mitochondrial genomes among the specimens showed a paraphyletic origin of the major haplogroups between the subspecies but a monophyletic structure between the continents. Thus, our study identified that Cx. p. molestus and Cx. p. pipiens represent different evolutionary units with monophyletic origin that have undergone incipient ecological speciation.
Project description:AbstractIn late 2014, Zika virus (ZIKV; Flaviviridae, Flavivirus) emerged as a significant arboviral disease threat in the Western hemisphere. Aedes aegypti and Aedes albopictus have been considered the principal vectors of ZIKV in the New World due to viral isolation frequency and vector competence assessments. Limited reports of Culex transmission potential have highlighted the need for additional vector competence assessments of North American Culex species. Accordingly, North American Culex pipiens and Culex quinquefasciatus were orally exposed and intrathoracically inoculated with the African prototype ZIKV strain and currently circulating Asian lineage ZIKV strains to assess infection, dissemination, and transmission potential. Results indicated that these two North American Culex mosquito species were highly refractory to oral infection with no dissemination or transmission observed with any ZIKV strains assessed. Furthermore, both Culex mosquito species intrathoracically inoculated with either Asian or African lineage ZIKVs failed to expectorate virus in saliva. These in vivo results were further supported by the observation that multiple mosquito cell lines of Culex species origin demonstrated significant growth restriction of ZIKV strains compared with Aedes-derived cell lines. In summation, no evidence for the potential of Cx. pipiens or Cx. quinquefasciatus to serve as a competent vector for ZIKV transmission in North America was observed.
Project description:BackgroundZika virus (ZIKV) is a mosquito-borne flavivirus that recently emerged in the South Pacific islands and Americas where unprecedented outbreaks were reported. Although Aedes aegypti is considered to be the main vector for ZIKV, other mosquito species have been shown to be potential vectors and differences in vector competence with respect to mosquito strain and ZIKV strain have been demonstrated. In this study we compared the vector competence of three mosquito species Aedes albopictus, Ae. aegypti and Culex quinquefasciatus from Reunion Island for three ZIKV strains.MethodsFive mosquito strains (2 strains of Ae. albopictus, 1 of Ae. aegypti and 2 of Cx. quinquefasciatus) were exposed to three ZIKV strains: one African strain (Dak84) and two Asian strains (PaRi_2015 and MAS66). The vector competence parameters (infection rate, dissemination efficiency and transmission efficiency) and viral loads were examined at 14 and 21 days post-infection.ResultsThe two Cx. quinquefasciatus strains did not become infected and were therefore unable to either disseminate or transmit any of the three ZIKV strains. Aedes albopictus and Ae. aegypti strains were poorly competent for the two Asian ZIKV strains, while both mosquito species displayed higher infection rates, dissemination and transmission efficiencies for the African ZIKV Dak84 strain. However, this African ZIKV strain was better transmitted by Ae. aegypti as compared to Ae. albopictus.ConclusionsOur results show that both Ae. albopictus and Ae. aegypti, from Reunion Island, are more likely to be competent for ZIKV in contrast to Cx. quinquefasciatus which appeared refractory to all tested ZIKV strains. This improves our understanding of the role of mosquito species in the risk of the ZIKV emergence on Reunion Island.
Project description:Zika virus (ZIKV) is a flavivirus that has recently been associated with an increased incidence of neonatal microcephaly and other neurological disorders. The virus is primarily transmitted by mosquito bite, although other routes of infection have been implicated in some cases. The Aedes aegypti mosquito is considered to be the main vector to humans worldwide; however, there is evidence that other mosquito species, including Culex quinquefasciatus, transmit the virus. To test the potential of Cx. quinquefasciatus to transmit ZIKV, we experimentally compared the vector competence of laboratory-reared Ae. aegypti and Cx. quinquefasciatus. Interestingly, we were able to detect the presence of ZIKV in the midgut, salivary glands and saliva of artificially fed Cx. quinquefasciatus. In addition, we collected ZIKV-infected Cx. quinquefasciatus from urban areas with high microcephaly incidence in Recife, Brazil. Corroborating our experimental data from artificially fed mosquitoes, ZIKV was isolated from field-caught Cx. quinquefasciatus, and its genome was partially sequenced. Collectively, these findings indicate that there may be a wider range of ZIKV vectors than anticipated.
Project description:BackgroundJapanese encephalitis virus (JEV) is the causative agent of Japanese encephalitis, the leading cause of viral encephalitis in Asia. JEV transmission cycle involves mosquitoes and vertebrate hosts. The detection of JEV RNA in a pool of Culex pipiens caught in 2010 in Italy raised the concern of a putative emergence of the virus in Europe. We aimed to study the vector competence of European mosquito populations, such as Cx. pipiens and Aedes albopictus for JEV genotypes 3 and 5.FindingsAfter oral feeding on an infectious blood meal, mosquitoes were dissected at various times post-virus exposure. We found that the peak for JEV infection and transmission was between 11 and 13 days post-virus exposure. We observed a faster dissemination of both JEV genotypes in Ae. albopictus mosquitoes, when compared with Cx. pipiens mosquitoes. We also dissected salivary glands and collected saliva from infected mosquitoes and showed that Ae. albopictus mosquitoes transmitted JEV earlier than Cx. pipiens. The virus collected from Ae. albopictus and Cx. pipiens saliva was competent at causing pathogenesis in a mouse model for JEV infection. Using this model, we found that mosquito saliva or salivary glands did not enhance the severity of the disease.ConclusionsIn this study, we demonstrated that European populations of Ae. albopictus and Cx. pipiens were efficient vectors for JEV transmission. Susceptible vertebrate species that develop high viremia are an obligatory part of the JEV transmission cycle. This study highlights the need to investigate the susceptibility of potential JEV reservoir hosts in Europe, notably amongst swine populations and local water birds.
Project description:Zika virus (ZIKV) has emerged since 2013 as a significant global human health threat following outbreaks in the Pacific Islands and rapid spread throughout South and Central America. Severe congenital and neurological sequelae have been linked to ZIKV infections. Assessing the ability of common mosquito species to transmit ZIKV and characterizing variation in mosquito transmission of different ZIKV strains is important for estimating regional outbreak potential and for prioritizing local mosquito control strategies for Aedes and Culex species. In this study, we evaluated the laboratory vector competence of Aedes aegypti, Culex quinquefasciatus, and Culex tarsalis that originated in areas of California where ZIKV cases in travelers since 2015 were frequent. We compared infection, dissemination, and transmission rates by measuring ZIKV RNA levels in cohorts of mosquitoes that ingested blood meals from type I interferon-deficient mice infected with either a Puerto Rican ZIKV strain from 2015 (PR15), a Brazilian ZIKV strain from 2015 (BR15), or an ancestral Asian-lineage Malaysian ZIKV strain from 1966 (MA66). With PR15, Cx. quinquefasciatus was refractory to infection (0%, N = 42) and Cx. tarsalis was infected at 4% (N = 46). No ZIKV RNA was detected in saliva from either Culex species 14 or 21 days post feeding (dpf). In contrast, Ae. aegypti developed infection rates of 85% (PR15; N = 46), 90% (BR15; N = 20), and 81% (MA66; N = 85) 14 or 15 dpf. Although MA66-infected Ae. aegypti showed higher levels of ZIKV RNA in mosquito bodies and legs, transmission rates were not significantly different across virus strains (P = 0.13, Fisher's exact test). To confirm infectivity and measure the transmitted ZIKV dose, we enumerated infectious ZIKV in Ae. aegypti saliva using Vero cell plaque assays. The expectorated plaque forming units PFU varied by viral strain: MA66-infected expectorated 13±4 PFU (mean±SE, N = 13) compared to 29±6 PFU for PR15-infected (N = 13) and 35±8 PFU for BR15-infected (N = 6; ANOVA, df = 2, F = 3.8, P = 0.035). These laboratory vector competence results support an emerging consensus that Cx. tarsalis and Cx. quinquefasciatus are not vectors of ZIKV. These results also indicate that Ae. aegypti from California are efficient laboratory vectors of ancestral and contemporary Asian lineage ZIKV.
Project description:Culex pipiens molestus and Cx. p. quinquefasciatus are the members of Culex pipiens Complex, but they display relatively large differences in behavior and physiological responses. We compared the genes of these mosquitoes to identify those that were differentially expressed in each subspecies. Such genes could play important roles in subspecies-specific blood feeding or oviposition behavior.