Campylobacter concisus pathotypes induce distinct global responses in intestinal epithelial cells.
Ontology highlight
ABSTRACT: The epithelial response to the opportunistic pathogen Campylobacter concisus is poorly characterised. Here, we assessed the intestinal epithelial responses to two C. concisus strains with different virulence characteristics in Caco-2 cells using RNAseq, and validated a subset of the response using qPCR arrays. C. concisus strains induced distinct response patterns from intestinal epithelial cells, with the toxigenic strain inducing a significantly more amplified response. A range of cellular functions were significantly regulated in a strain-specific manner, including epithelial-to-mesenchymal transition (NOTCH and Hedgehog), cytoskeletal remodeling, tight junctions, inflammatory responses and autophagy. Pattern recognition receptors were regulated, including TLR3 and IFI16, suggesting that nucleic acid sensing was important for epithelial recognition of C. concisus. C. concisus zonula occludens toxin (ZOT) was expressed and purified, and the epithelial response to the toxin was analysed using RNAseq. ZOT upregulated PAR2 expression, as well as processes related to tight junctions and cytoskeletal remodeling. C. concisus ZOT also induced upregulation of TLR3, pro-inflammatory cytokines IL6, IL8 and chemokine CXCL16, as well as the executioner caspase CASP7. Here, we characterise distinct global epithelial responses to C. concisus strains, and the virulence factor ZOT, and provide novel information on mechanisms by which this bacterium may affect the host.
SUBMITTER: Deshpande NP
PROVIDER: S-EPMC5039708 | biostudies-literature | 2016 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA