Unknown

Dataset Information

0

Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk.


ABSTRACT: Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders' spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100?nm and the "rigid-soft" system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.

SUBMITTER: Xie L 

PROVIDER: S-EPMC5046138 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk.

Xie Lan L   Xu Huan H   Li Liang-Bin LB   Hsiao Benjamin S BS   Zhong Gan-Ji GJ   Li Zhong-Ming ZM  

Scientific reports 20161003


Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders' spinning principles, was conceived to build silk-mimicki  ...[more]

Similar Datasets

| S-EPMC7673682 | biostudies-literature
| S-EPMC7397010 | biostudies-literature
| S-EPMC4753498 | biostudies-literature
| S-EPMC6235870 | biostudies-literature
| S-EPMC4256644 | biostudies-other
| S-EPMC7397007 | biostudies-literature
| S-EPMC10578117 | biostudies-literature
| S-EPMC7023277 | biostudies-literature
| S-EPMC7352312 | biostudies-literature
| S-EPMC6168590 | biostudies-literature