Unknown

Dataset Information

0

Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition.


ABSTRACT: Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during development and homeostasis. We show that the codon triplet contains translation-dependent regulatory information that influences transcript decay. Codon composition shapes maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, Xenopus, mouse, and Drosophila, and gene expression during homeostasis across human tissues. Some synonymous codons show consistent stabilizing or destabilizing effects, suggesting that amino acid composition influences mRNA stability. Codon composition affects both polyadenylation status and translation efficiency. Thus, the ribosome interprets two codes within the mRNA: the genetic code which specifies the amino acid sequence and a conserved "codon optimality code" that shapes mRNA stability and translation efficiency across vertebrates.

SUBMITTER: Bazzini AA 

PROVIDER: S-EPMC5048347 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition.

Bazzini Ariel A AA   Del Viso Florencia F   Moreno-Mateos Miguel A MA   Johnstone Timothy G TG   Vejnar Charles E CE   Qin Yidan Y   Yao Jun J   Khokha Mustafa K MK   Giraldez Antonio J AJ   Giraldez Antonio J AJ  

The EMBO journal 20160719 19


Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during  ...[more]

Similar Datasets

| S-EPMC8809684 | biostudies-literature
| S-EPMC9736783 | biostudies-literature
| S-EPMC10270193 | biostudies-literature
2021-11-28 | GSE169632 | GEO
| S-EPMC6887711 | biostudies-literature
| S-EPMC5323276 | biostudies-literature
2020-05-26 | PXD009514 | Pride
| S-EPMC6633259 | biostudies-literature
| S-EPMC3149499 | biostudies-literature
| S-EPMC9343644 | biostudies-literature