Unknown

Dataset Information

0

Identification of early gene expression changes in primary cultured neurons treated with topoisomerase I poisons.


ABSTRACT: Topoisomerase 1 (TOP1) poisons like camptothecin (CPT) are currently used in cancer chemotherapy but these compounds can have damaging, off-target effects on neurons leading to cognitive, sensory and motor deficits. To understand the molecular basis for the enhanced sensitivity of neurons to CPT, we examined the effects of compounds that inhibit TOP1-CPT, actinomycin D (ActD) and ?-lapachone (?-Lap)-on primary cultured rat motor (MN) and cortical (CN) neurons as well as fibroblasts. Neuronal cells expressed higher levels of Top1 mRNA than fibroblasts but transcript levels are reduced in all cell types after treatment with CPT. Microarray analysis was performed to identify differentially regulated transcripts in MNs in response to a brief exposure to CPT. Pathway analysis of the differentially expressed transcripts revealed activation of ERK and JNK signaling cascades in CPT-treated MNs. Immediate-early genes like Fos, Egr-1 and Gadd45b were upregulated in CPT-treated MNs. Fos mRNA levels were elevated in all cell types treated with CPT; Egr-1, Gadd45b and Dyrk3 transcript levels, however, increased in CPT-treated MNs and CNs but decreased in CPT-treated fibroblasts. These transcripts may represent new targets for the development of therapeutic agents that mitigate the off-target effects of chemotherapy on the nervous system.

SUBMITTER: Rossi SL 

PROVIDER: S-EPMC5048596 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of early gene expression changes in primary cultured neurons treated with topoisomerase I poisons.

Rossi Sharyn L SL   Lumpkin Casey J CJ   Harris Ashlee W AW   Holbrook Jennifer J   Gentillon Cinsley C   McCahan Suzanne M SM   Wang Wenlan W   Butchbach Matthew E R MER  

Biochemical and biophysical research communications 20160915 2


Topoisomerase 1 (TOP1) poisons like camptothecin (CPT) are currently used in cancer chemotherapy but these compounds can have damaging, off-target effects on neurons leading to cognitive, sensory and motor deficits. To understand the molecular basis for the enhanced sensitivity of neurons to CPT, we examined the effects of compounds that inhibit TOP1-CPT, actinomycin D (ActD) and β-lapachone (β-Lap)-on primary cultured rat motor (MN) and cortical (CN) neurons as well as fibroblasts. Neuronal cel  ...[more]

Similar Datasets

| S-EPMC1570425 | biostudies-literature
| S-EPMC4449814 | biostudies-literature
| S-EPMC8209676 | biostudies-literature
| S-EPMC2716134 | biostudies-literature
| S-EPMC5238604 | biostudies-literature
| S-EPMC6106933 | biostudies-literature
| S-EPMC8206239 | biostudies-literature
| S-EPMC127280 | biostudies-literature
| S-EPMC1222798 | biostudies-other
| S-EPMC6019456 | biostudies-literature