Unknown

Dataset Information

0

FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon.


ABSTRACT: Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. In addition, leak conductance density along the distal axon is estimated as <1% that of somatodendritic membrane. The faster inactivation rate of FHF-free Navs together with very low axonal leak conductance serves to minimize ionic fluxes and energetic demand during repetitive spike conduction and at rest. The absence of FHFs from Navs at nodes of Ranvier in the central nervous system suggests a similar mechanism of current flux minimization along myelinated axons.

SUBMITTER: Dover K 

PROVIDER: S-EPMC5052690 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon.

Dover Katarzyna K   Marra Christopher C   Solinas Sergio S   Popovic Marko M   Subramaniyam Sathyaa S   Zecevic Dejan D   D'Angelo Egidio E   Goldfarb Mitchell M  

Nature communications 20160926


Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Na<sub>v</sub>)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Na<sub>v</sub> inactivation, dis  ...[more]

Similar Datasets

| S-EPMC6646744 | biostudies-literature
| S-EPMC2990270 | biostudies-literature
| S-EPMC1906860 | biostudies-literature
| S-EPMC9331813 | biostudies-literature
| S-EPMC8453547 | biostudies-literature
| S-EPMC5987634 | biostudies-other
| S-EPMC6725905 | biostudies-literature
| S-EPMC2172896 | biostudies-other
| S-EPMC5307438 | biostudies-literature
| S-EPMC2996826 | biostudies-literature