Unknown

Dataset Information

0

Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs.


ABSTRACT: Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons, mitochondria in these neurons exhibit pronounced changes during differentiation, including mature neurophysiology characterization and functional synaptic network formation. Inhibition of mitochondrial respiratory chains via application of complex IV inhibitor KCN (potassium cyanide) or complex I inhibitor rotenone restricted neurogenesis of DA neurons. These results demonstrated the direct importance of mitochondrial development and bioenergetics in DA neuronal differentiation. Our study also provides a neurophysiologic model of mitochondrial involvement in neurogenesis, which will enhance our understanding of the role of mitochondrial dysfunctions in neurodegenerative diseases.

SUBMITTER: Fang D 

PROVIDER: S-EPMC5063542 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs.

Fang Du D   Qing Yu Y   Yan Shijun S   Chen Doris D   Yan Shirley ShiDu SS  

Stem cell reports 20160922 4


Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons, mitochondria in these neurons exhibit pronounced changes during differentiation, including mature neurophysiology characterization and functio  ...[more]

Similar Datasets

| S-EPMC9071413 | biostudies-literature
| S-EPMC4932781 | biostudies-literature
| S-EPMC6740851 | biostudies-literature
| S-EPMC8931002 | biostudies-literature
| S-EPMC5561950 | biostudies-other
| S-EPMC2533700 | biostudies-literature
2013-03-07 | E-GEOD-43364 | biostudies-arrayexpress
| S-EPMC3413160 | biostudies-literature
| S-EPMC4740755 | biostudies-literature
| S-EPMC7468330 | biostudies-literature