Unknown

Dataset Information

0

Transcriptome Analysis and Ultrastructure Observation Reveal that Hawthorn Fruit Softening Is due to Cellulose/Hemicellulose Degradation.


ABSTRACT: Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that 'Ruanrou Shanlihong 3 Hao' fruits became softer during ripening, whereas 'Qiu JinXing' fruits remained hard. At late developmental stages, the firmness of 'Ruanrou Shanlihong 3 Hao' fruits rapidly declined, and that of 'Qiu JinXing' fruits remained essentially unchanged. According to transmission electron microscopy, the middle lamella of 'Qiu JinXing' and 'Ruanrou Shanlihong 3 Hao' fruit flesh was largely degraded as the fruits matured. Microfilaments in 'Qiu JinXing' flesh were arranged close together and were deep in color, whereas those in 'Ruanrou Shanlihong 3 Hao' fruit flesh were arranged loosely, partially degraded and light in color. RNA-Seq analysis yielded approximately 46.72 Gb of clean data and 72,837 unigenes. Galactose metabolism and pentose and glucuronate interconversions are involved in cell wall metabolism, play an important role in hawthorn texture. We identified 85 unigenes related to the cell wall between hard- and soft-fleshed hawthorn fruits. Based on data analysis and real-time PCR, we suggest that ?-GAL and PE4 have important functions in early fruit softening. The genes Ffase, Gns,?-GAL, PE63, XTH, and CWP, which are involved in cell wall degradation, are responsible for the different textures of hawthorn fruits. Thus, we hypothesize that the different textures of 'Qiu JinXing' and 'Ruanrou Shanlihong 3 Hao' fruits at maturity mainly result from cellulose/hemicelluloses degradation rather than from lamella degradation. Overall, we propose that different types of hydrolytic enzymes in cells interact to degrade the cell wall, resulting in ultramicroscopic Structure changes in the cell wall and, consequently, fruit softening. These results provide fundamental insight regarding the mechanisms by which hawthorn fruits acquire different textures and also lay a solid foundation for further research.

SUBMITTER: Xu J 

PROVIDER: S-EPMC5063854 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcriptome Analysis and Ultrastructure Observation Reveal that Hawthorn Fruit Softening Is due to Cellulose/Hemicellulose Degradation.

Xu Jiayu J   Zhao Yuhui Y   Zhang Xiao X   Zhang Lijie L   Hou Yali Y   Dong Wenxuan W  

Frontiers in plant science 20161014


Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that 'Ruanrou Shanlihong 3 Hao' fruits became softer during ripening, whereas 'Qiu JinXing' fruits remained hard. At late developmental stages, the firmness of 'Ruanrou Shanlihong 3 Hao' fruits rapidly declined, and that of 'Qiu JinXing' fruits remained essentially unchanged.  ...[more]

Similar Datasets

| PRJEB13836 | ENA
| S-EPMC10436216 | biostudies-literature
| S-EPMC6447707 | biostudies-literature
| S-EPMC5448851 | biostudies-other
| S-EPMC3268433 | biostudies-literature
| S-EPMC9384962 | biostudies-literature
2014-09-25 | GSE44673 | GEO
| S-EPMC3930720 | biostudies-literature
| PRJNA339788 | ENA
| S-EPMC4867992 | biostudies-literature