Clonally Related GABAergic Interneurons Do Not Randomly Disperse but Frequently Form Local Clusters in the Forebrain.
Ontology highlight
ABSTRACT: Progenitor cells in the medial ganglionic eminence (MGE) and preoptic area (PoA) give rise to GABAergic inhibitory interneurons that are distributed in the forebrain, largely in the cortex, hippocampus, and striatum. Two previous studies suggest that clonally related interneurons originating from individual MGE/PoA progenitors frequently form local clusters in the cortex. However, Mayer et al. and Harwell et al. recently argued that MGE/PoA-derived interneuron clones disperse widely and populate different forebrain structures. Here, we report further analysis of the spatial distribution of clonally related interneurons and demonstrate that interneuron clones do not non-specifically disperse in the forebrain. Around 70% of clones are restricted to one brain structure, predominantly the cortex. Moreover, the regional distribution of clonally related interneurons exhibits a clear clustering feature, which cannot occur by chance from a random diffusion. These results confirm that lineage relationship influences the spatial distribution of inhibitory interneurons in the forebrain. This Matters Arising paper is in response to Harwell et al. (2015) and Mayer et al. (2015), published in Neuron. See also the response by Turrero García et al. (2016) and Mayer et al. (2016), published in this issue.
SUBMITTER: Sultan KT
PROVIDER: S-EPMC5066572 | biostudies-literature | 2016 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA