Genome-wide methylation profiling of ovarian cancer patient-derived xenografts treated with the demethylating agent decitabine identifies novel epigenetically regulated genes and pathways.
Ontology highlight
ABSTRACT: In high-grade serous ovarian cancer (HGSOC), intrinsic and/or acquired resistance against platinum-containing chemotherapy is a major obstacle for successful treatment. A low frequency of somatic mutations but frequent epigenetic alterations, including DNA methylation in HGSOC tumors, presents the cancer epigenome as a relevant target for innovative therapy. Patient-derived xenografts (PDXs) supposedly are good preclinical models for identifying novel drug targets. However, the representativeness of global methylation status of HGSOC PDXs compared to their original tumors has not been evaluated so far. Aims of this study were to explore how representative HGSOC PDXs are of their corresponding patient tumor methylome and to evaluate the effect of epigenetic therapy and cisplatin on putative epigenetically regulated genes and their related pathways in PDXs.Genome-wide analysis of the DNA methylome of HGSOC patients with their corresponding PDXs, from different generations, was performed using Infinium 450 K methylation arrays. Furthermore, we analyzed global methylome changes after treatment of HGSOC PDXs with the FDA approved demethylating agent decitabine and cisplatin. Findings were validated by bisulfite pyrosequencing with subsequent pathway analysis. Publicly available datasets comprising HGSOC patients were used to analyze the prognostic value of the identified genes.Only 0.6-1.0 % of all analyzed CpGs (388,696 CpGs) changed significantly (p?
SUBMITTER: Tomar T
PROVIDER: S-EPMC5072346 | biostudies-literature | 2016 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA