Project description:Protein structure alignment methods are used for the detection of evolutionary and functionally related positions in proteins. A wide array of different methods are available, but the choice of the best method is often not apparent to the user. Several studies have assessed the alignment accuracy and consistency of structure alignment methods, but none of these explicitly considered membrane proteins, which are important targets for drug development and have distinct structural features. Here, we compared 13 widely used pairwise structural alignment methods on a test set of homologous membrane protein structures (called HOMEP3). Each pair of structures was aligned and the corresponding sequence alignment was used to construct homology models. The model accuracy compared to the known structures was assessed using scoring functions not incorporated in the tested structural alignment methods. The analysis shows that fragment-based approaches such as FR-TM-align are the most useful for aligning structures of membrane proteins. Moreover, fragment-based approaches are more suitable for comparison of protein structures that have undergone large conformational changes. Nevertheless, no method was clearly superior to all other methods. Additionally, all methods lack a measure to rate the reliability of a position within a structure alignment. To solve both of these problems, we propose a consensus-type approach, combining alignments from four different methods, namely FR-TM-align, DaliLite, MATT, and FATCAT. Agreement between the methods is used to assign confidence values to each position of the alignment. Overall, we conclude that there remains scope for the improvement of structural alignment methods for membrane proteins.
Project description:BackgroundAn algorithm is presented to compute a multiple structure alignment for a set of proteins and to generate a consensus (pseudo) protein which captures common substructures present in the given proteins. The algorithm represents each protein as a sequence of triples of coordinates of the alpha-carbon atoms along the backbone. It then computes iteratively a sequence of transformation matrices (i.e., translations and rotations) to align the proteins in space and generate the consensus. The algorithm is a heuristic in that it computes an approximation to the optimal alignment that minimizes the sum of the pairwise distances between the consensus and the transformed proteins.ResultsExperimental results show that the algorithm converges quite rapidly and generates consensus structures that are visually similar to the input proteins. A comparison with other coordinate-based alignment algorithms (MAMMOTH and MATT) shows that the proposed algorithm is competitive in terms of speed and the sizes of the conserved regions discovered in an extensive benchmark dataset derived from the HOMSTRAD and SABmark databases. The algorithm has been implemented in C++ and can be downloaded from the project's web page. Alternatively, the algorithm can be used via a web server which makes it possible to align protein structures by uploading files from local disk or by downloading protein data from the RCSB Protein Data Bank.ConclusionsAn algorithm is presented to compute a multiple structure alignment for a set of proteins, together with their consensus structure. Experimental results show its effectiveness in terms of the quality of the alignment and computational cost.
Project description:In this study, we investigate the extent to which techniques for homology modeling that were developed for water-soluble proteins are appropriate for membrane proteins as well. To this end we present an assessment of current strategies for homology modeling of membrane proteins and introduce a benchmark data set of homologous membrane protein structures, called HOMEP. First, we use HOMEP to reveal the relationship between sequence identity and structural similarity in membrane proteins. This analysis indicates that homology modeling is at least as applicable to membrane proteins as it is to water-soluble proteins and that acceptable models (with C alpha-RMSD values to the native of 2 A or less in the transmembrane regions) may be obtained for template sequence identities of 30% or higher if an accurate alignment of the sequences is used. Second, we show that secondary-structure prediction algorithms that were developed for water-soluble proteins perform approximately as well for membrane proteins. Third, we provide a comparison of a set of commonly used sequence alignment algorithms as applied to membrane proteins. We find that high-accuracy alignments of membrane protein sequences can be obtained using state-of-the-art profile-to-profile methods that were developed for water-soluble proteins. Improvements are observed when weights derived from the secondary structure of the query and the template are used in the scoring of the alignment, a result which relies on the accuracy of the secondary-structure prediction of the query sequence. The most accurate alignments were obtained using template profiles constructed with the aid of structural alignments. In contrast, a simple sequence-to-sequence alignment algorithm, using a membrane protein-specific substitution matrix, shows no improvement in alignment accuracy. We suggest that profile-to-profile alignment methods should be adopted to maximize the accuracy of homology models of membrane proteins.
Project description:Membrane proteins are encoded by 20-35% of genes but represent <1% of known protein structures to date. Thus, improved methods for membrane-protein structure determination are of critical importance. Residual dipolar couplings (RDCs), commonly measured for biological macromolecules weakly aligned by liquid-crystalline media, are important global angular restraints for NMR structure determination. For alpha-helical membrane proteins >15 kDa in size, Nuclear-Overhauser effect-derived distance restraints are difficult to obtain, and RDCs could serve as the main reliable source of NMR structural information. In many of these cases, RDCs would enable full structure determination that otherwise would be impossible. However, none of the existing liquid-crystalline media used to align water-soluble proteins are compatible with the detergents required to solubilize membrane proteins. We report the design and construction of a detergent-resistant liquid crystal of 0.8-microm-long DNA-nanotubes that can be used to induce weak alignment of membrane proteins. The nanotubes are heterodimers of 0.4-microm-long six-helix bundles each self-assembled from a 7.3-kb scaffold strand and >170 short oligonucleotide staple strands. We show that the DNA-nanotube liquid crystal enables the accurate measurement of backbone N(H) and C(alpha)H(alpha) RDCs for the detergent-reconstituted zeta-zeta transmembrane domain of the T cell receptor. The measured RDCs validate the high-resolution structure of this transmembrane dimer. We anticipate that this medium will extend the advantages of weak alignment to NMR structure determination of a broad range of detergent-solubilized membrane proteins.
Project description:BackgroundOuter membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery.ResultsBased on the observation that almost all OMPs consist of antiparallel ?-strands in a barrel shape and that their secondary structure arrangements differ from those of other types of proteins, we propose a simple method called SSEA-OMP to identify OMPs using secondary structure element alignment. Through intensive benchmark experiments, the proposed SSEA-OMP method is better than some well-established OMP detection methods.ConclusionsThe major advantage of SSEA-OMP is its good prediction performance considering its simplicity. The web server implements the method is freely accessible at http://protein.cau.edu.cn/SSEA-OMP/index.html.
Project description:BackgroundAccurate sequence alignments are essential for homology searches and for building three-dimensional structural models of proteins. Since structure is better conserved than sequence, structure alignments have been used to guide sequence alignments and are commonly used as the gold standard for sequence alignment evaluation. Nonetheless, as far as we know, there is no report of a systematic evaluation of pairwise structure alignment programs in terms of the sequence alignment accuracy.ResultsIn this study, we evaluate CE, DaliLite, FAST, LOCK2, MATRAS, SHEBA and VAST in terms of the accuracy of the sequence alignments they produce, using sequence alignments from NCBI's human-curated Conserved Domain Database (CDD) as the standard of truth. We find that 4 to 9% of the residues on average are either not aligned or aligned with more than 8 residues of shift error and that an additional 6 to 14% of residues on average are misaligned by 1-8 residues, depending on the program and the data set used. The fraction of correctly aligned residues generally decreases as the sequence similarity decreases or as the RMSD between the C alpha positions of the two structures increases. It varies significantly across CDD superfamilies whether shift error is allowed or not. Also, alignments with different shift errors occur between proteins within the same CDD superfamily, leading to inconsistent alignments between superfamily members. In general, residue pairs that are more than 3.0 A apart in the reference alignment are heavily (>or= 25% on average) misaligned in the test alignments. In addition, each method shows a different pattern of relative weaknesses for different SCOP classes. CE gives relatively poor results for beta-sheet-containing structures (all-beta, alpha/beta, and alpha+beta classes), DaliLite for "others" class where all but the major four classes are combined, and LOCK2 and VAST for all-beta and "others" classes.ConclusionWhen the sequence similarity is low, structure-based methods produce better sequence alignments than by using sequence similarities alone. However, current structure-based methods still mis-align 11-19% of the conserved core residues when compared to the human-curated CDD alignments. The alignment quality of each program depends on the protein structural type and similarity, with DaliLite showing the most agreement with CDD on average.
Project description:Protein structural annotation and classification is an important and challenging problem in bioinformatics. Research towards analysis of sequence-structure correspondences is critical for better understanding of a protein's structure, function, and its interaction with other molecules. Clustering of protein domains based on their structural similarities provides valuable information for protein classification schemes. In this article, we attempt to determine whether structure information alone is sufficient to adequately classify protein structures. We present an algorithm that identifies regions of structural similarity within a given set of protein structures, and uses those regions for clustering. In our approach, called STRALCP (STRucture ALignment-based Clustering of Proteins), we generate detailed information about global and local similarities between pairs of protein structures, identify fragments (spans) that are structurally conserved among proteins, and use these spans to group the structures accordingly. We also provide a web server at http://as2ts.llnl.gov/AS2TS/STRALCP/ for selecting protein structures, calculating structurally conserved regions and performing automated clustering.
Project description:Multiple local structure comparison helps to identify common structural motifs or conserved binding sites in 3D structures in distantly related proteins. Since there is no best way to compare structures and evaluate the alignment, a wide variety of techniques and different similarity scoring schemes have been proposed. Existing algorithms usually compute the best superposition of two structures or attempt to solve it as an optimization problem in a simpler setting (e.g., considering contact maps or distance matrices). Here, we present PROPOSAL (PROteins comparison through Probabilistic Optimal Structure local ALignment), a stochastic algorithm based on iterative sampling for multiple local alignment of protein structures. Our method can efficiently find conserved motifs across a set of protein structures. Only the distances between all pairs of residues in the structures are computed. To show the accuracy and the effectiveness of PROPOSAL we tested it on a few families of protein structures. We also compared PROPOSAL with two state-of-the-art tools for pairwise local alignment on a dataset of manually annotated motifs. PROPOSAL is available as a Java 2D standalone application or a command line program at http://ferrolab.dmi.unict.it/proposal/proposal.html.
Project description:HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively). Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.
Project description:There is a large gap between the number of membrane protein (MP) sequences and that of their decoded 3D structures, especially high-resolution structures, due to difficulties in crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for the fundamental understanding of the function of an MP and the interactions between the protein and its inhibitors or activators. In this paper, some computational approaches that have been used to predict MP structures are discussed and compared.