Unknown

Dataset Information

0

IBMPFD Disease-Causing Mutant VCP/p97 Proteins Are Targets of Autophagic-Lysosomal Degradation.


ABSTRACT: The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies.

SUBMITTER: Bayraktar O 

PROVIDER: S-EPMC5074563 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

IBMPFD Disease-Causing Mutant VCP/p97 Proteins Are Targets of Autophagic-Lysosomal Degradation.

Bayraktar Oznur O   Oral Ozlem O   Kocaturk Nur Mehpare NM   Akkoc Yunus Y   Eberhart Karin K   Kosar Ali A   Gozuacik Devrim D  

PloS one 20161021 10


The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast  ...[more]

Similar Datasets

| S-EPMC3411080 | biostudies-literature
| S-EPMC2929010 | biostudies-literature
| S-EPMC6727759 | biostudies-literature
| S-EPMC5389304 | biostudies-literature
| S-EPMC5496615 | biostudies-literature
| S-EPMC3164199 | biostudies-literature
| S-EPMC10541173 | biostudies-literature
| S-EPMC11258360 | biostudies-literature
| S-EPMC8254722 | biostudies-literature
| S-EPMC6613884 | biostudies-literature