Project description:Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980's and have been increasing since the earliest counts in the 1960's. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations.
Project description:Circoviruses infect a variety of animal species and have small (~1.8-2.2 kb) circular single-stranded DNA genomes. Recently a penguin circovirus (PenCV) was identified associated with an Adélie Penguin (Pygoscelis adeliae) with feather disorder and in the cloacal swabs of three asymptomatic Adélie Penguins at Cape Crozier, Antarctica. A total of 75 cloacal swab samples obtained from adults and chicks of three species of penguin (genus: Pygoscelis) from seven Antarctic breeding colonies (South Shetland Islands and Western Antarctic Peninsula) in the 2015-2016 breeding season were screened for PenCV. We identified new variants of PenCV in one Adélie Penguin and one Chinstrap Penguin (Pygoscelis antarcticus) from Port Charcot, Booth Island, Western Antarctic Peninsula, a site home to all three species of Pygoscelid penguins. These two PenCV genomes (length of 1986 nucleotides) share > 99% genome-wide nucleotide identity with each other and share ~87% genome-wide nucleotide identity with the PenCV sequences described from Adélie Penguins at Cape Crozier ~4400 km away in East Antarctica. We did not find any evidence of recombination among PenCV sequences. This is the first report of PenCV in Chinstrap Penguins and the first detection outside of Ross Island, East Antarctica. Given the limited knowledge on Antarctic animal viral diversity, future samples from Antarctic wildlife should be screened for these and other viruses to determine the prevalence and potential impact of viral infections.
Project description:Major, long-term environmental changes are projected in the Southern Ocean and these are likely to have impacts for marine predators such as the Adélie penguin (Pygoscelis adeliae). Decadal monitoring studies have provided insight into the short-term environmental sensitivities of Adélie penguin populations, particularly to sea ice changes. However, given the long-term nature of projected climate change, it is also prudent to consider the responses of populations to environmental change over longer time scales. We investigated the population trajectory of Adélie penguins during the last glacial-interglacial transition to determine how the species was affected by climate warming over millennia. We focussed our study on East Antarctica, which is home to 30 % of the global population of Adélie penguins.Using mitochondrial DNA from extant colonies, we reconstructed the population trend of Adélie penguins in East Antarctica over the past 22,000 years using an extended Bayesian skyline plot method. To determine the relationship of East Antarctic Adélie penguins with populations elsewhere in Antarctica we constructed a phylogeny using mitochondrial DNA sequences.We found that the Adélie penguin population expanded 135-fold from approximately 14,000 years ago. The population growth was coincident with deglaciation in East Antarctica and, therefore, an increase in ice-free ground suitable for Adélie penguin nesting. Our phylogenetic analysis indicated that East Antarctic Adélie penguins share a common ancestor with Adélie penguins from the Antarctic Peninsula and Scotia Arc, with an estimated age of 29,000 years ago, in the midst of the last glacial period. This finding suggests that extant colonies in East Antarctica, the Scotia Arc and the Antarctic Peninsula were founded from a single glacial refuge.While changes in sea ice conditions are a critical driver of Adélie penguin population success over decadal and yearly timescales, deglaciation appears to have been the key driver of population change over millennia. This suggests that environmental drivers of population trends over thousands of years may differ to drivers over years or decades, highlighting the need to consider millennial-scale trends alongside contemporary data for the forecasting of species' abundance and distribution changes under future climate change scenarios.
Project description:Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.
Project description:Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.
Project description:While population declines among Adélie penguins and population increases among gentoo penguins on the Western Antarctic Peninsula are well established, the logistical challenges of operating in the sea ice-heavy northern tip of the Antarctic Peninsula have prohibited reliable monitoring of seabirds in this region. Here we describe the findings of an expedition to the northern and eastern sides of the Antarctic Peninsula-a region at the nexus of two proposed Marine Protected Areas-to investigate the distribution and abundance of penguins in this region. We discovered several previously undocumented penguin colonies, completed direct surveys of three colonies initially discovered in satellite imagery, and re-surveyed several colonies last surveyed more than a decade ago. Whereas our expectation had been that the Peninsula itself would divide the areas undergoing ecological transition and the apparently more stable Weddell Sea region, our findings suggest that the actual transition zone lies in the so-called "Adélie gap," a 400-km stretch of coastline in which Adélies are notably absent. Our findings suggest that the region north and east of this gap represents a distinct ecoregion whose dynamics stand in sharp contrast to surrounding areas and is likely to be impacted by future conservation measures.
Project description:There is great interest in measuring immune function in wild animals. Yet, field conditions often have methodological challenges related to handling stress, which can alter physiology. Despite general consensus that immune function is influenced by handling stress, previous studies have provided equivocal results. Furthermore, few studies have focused on long-lived species, which may have different stress-immune trade-offs compared to short-lived species that have primarily been tested. Here, we investigate whether capture and handling duration impacts innate immune function in a long-lived seabird, the Adélie penguin (Pygoscelis adeliae). We found no evidence for changes in three commonly used parameters of innate immune function upon holding time of up to 2 h, suggesting that immune function in this species is more robust against handling than in other species. This opens up exciting possibilities for measuring immune function in species with similar life-histories even if samples cannot be taken directly after capture.
Project description:Quantifying food intake in wild animals is crucial to many ecological and evolutionary questions, yet it can be very challenging, especially in the marine environment. Because foraging behavior can be inferred from dive recordings in many marine creatures, we hypothesized that specific behavioral dive variables can indicate food intake. To test this hypothesis, we attached time-depth recorders to breeding Adélie penguins also implanted with RFID tags that crossed a weighbridge as they traveled to and from the ocean to feed their chicks. The weighbridge reported how much mass the penguin had gained during a foraging trip. The variables that explained a significant amount of the change in body mass while at sea were the number of foraging dives per hour (46%) and the number of undulations per hour (12%). Most importantly, every increment of 1 in the rate of foraging dives per hour equated to a penguin gaining an average 170 g of mass, over the course of a 6-60 h foraging trip. These results add to a growing understanding that different metrics of foraging success are likely appropriate for different species, and that assessing the types and frequencies of dives using time-depth recorders can yield valuable insights.
Project description:The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.
Project description:Understanding the causes of disease in Antarctic wildlife is crucial, as many of these species are already threatened by environmental changes brought about by climate change. In recent years, Antarctic penguins have been showing signs of an unknown pathology: a feather disorder characterised by missing feathers, resulting in exposed skin. During the 2018-2019 austral summer breeding season at Cape Crozier colony on Ross Island, Antarctica, we observed for the first time an Adélie penguin chick missing down over most of its body. A guano sample was collected from the nest of the featherless chick, and using high-throughput sequencing, we identified a novel circovirus. Using abutting primers, we amplified the full genome, which we cloned and Sanger-sequenced to determine the complete genome of the circovirus. The Adélie penguin guano-associated circovirus genome shares <67% genome-wide nucleotide identity with other circoviruses, representing a new species of circovirus; therefore, we named it penguin circovirus (PenCV). Using the same primer pair, we screened 25 previously collected cloacal swabs taken at Cape Crozier from known-age adult Adélie penguins during the 2014-2015 season, displaying no clinical signs of feather-loss disorder. Three of the 25 samples (12%) were positive for a PenCV, whose genome shared >99% pairwise identity with the one identified in 2018-2019. This is the first report of a circovirus associated with a penguin species. This circovirus could be an etiological agent of the feather-loss disorder in Antarctic penguins.