Unknown

Dataset Information

0

Nanometer-localized multiple single-molecule fluorescence microscopy.


ABSTRACT: Fitting the image of a single molecule to the point spread function of an optical system greatly improves the precision with which single molecules can be located. Centroid localization with nanometer precision has been achieved when a sufficient number of photons are collected. However, if multiple single molecules reside within a diffraction-limited spot, this localization approach does not work. This paper demonstrates nanometer-localized multiple single-molecule (NALMS) fluorescence microscopy by using both centroid localization and photobleaching of the single fluorophores. Short duplex DNA strands are used as nanoscale "rulers" to validate the NALMS microscopy approach. Nanometer accuracy is demonstrated for two to five single molecules within a diffraction-limited area. NALMS microscopy will greatly facilitate single-molecule study of biological systems because it covers the gap between fluorescence resonance energy transfer-based (<10 nm) and diffraction-limited microscopy (>100 nm) measurements of the distance between two fluorophores. Application of NALMS microscopy to DNA mapping with <10-nm (i.e., 30-base) resolution is demonstrated.

SUBMITTER: Qu X 

PROVIDER: S-EPMC509198 | biostudies-literature | 2004 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nanometer-localized multiple single-molecule fluorescence microscopy.

Qu Xiaohui X   Wu David D   Mets Laurens L   Scherer Norbert F NF  

Proceedings of the National Academy of Sciences of the United States of America 20040726 31


Fitting the image of a single molecule to the point spread function of an optical system greatly improves the precision with which single molecules can be located. Centroid localization with nanometer precision has been achieved when a sufficient number of photons are collected. However, if multiple single molecules reside within a diffraction-limited spot, this localization approach does not work. This paper demonstrates nanometer-localized multiple single-molecule (NALMS) fluorescence microsco  ...[more]

Similar Datasets

| S-EPMC3927372 | biostudies-literature
| S-EPMC4748375 | biostudies-literature
| S-EPMC3277604 | biostudies-other
| S-EPMC3318128 | biostudies-literature
| S-EPMC7205595 | biostudies-literature
| S-EPMC5007495 | biostudies-literature
| S-EPMC10148226 | biostudies-literature
| S-EPMC9860250 | biostudies-literature
| S-EPMC4112009 | biostudies-literature
| S-EPMC3465359 | biostudies-other