Unknown

Dataset Information

0

Five factors can reconstitute all three phases of microtubule polymerization dynamics.


ABSTRACT: Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted dynamic MT plus end behavior involving all three phases by mixing tubulin with five Drosophila melanogaster proteins (EB1, XMAP215Msps, Sentin, kinesin-13Klp10A, and CLASPMast/Orbit). When singly mixed with tubulin, CLASPMast/Orbit strongly inhibited MT catastrophe and reduced the growth rate. However, in the presence of the other four factors, CLASPMast/Orbit acted as an inducer of pausing. The mitotic kinase Plk1Polo modulated the activity of CLASPMast/Orbit and kinesin-13Klp10A and increased the dynamic instability of MTs, reminiscent of mitotic cells. These results suggest that five conserved proteins constitute the core factors for creating dynamic MTs in cells and that Plk1-dependent phosphorylation is a crucial event for switching from the interphase to mitotic mode.

SUBMITTER: Moriwaki T 

PROVIDER: S-EPMC5100292 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Five factors can reconstitute all three phases of microtubule polymerization dynamics.

Moriwaki Takashi T   Goshima Gohta G  

The Journal of cell biology 20161031 3


Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted dynamic MT plus end behavior involving all three phases by mixing tubulin with five Drosophila melanogaster proteins (EB1, XMAP215<sup>Msps</sup>, Sentin, kinesin-13<sup>Klp10A</sup>, and CLASP<sup>Mas  ...[more]

Similar Datasets

| S-EPMC5773766 | biostudies-literature
| S-EPMC1366782 | biostudies-literature
| S-EPMC5479049 | biostudies-literature
| S-EPMC5179141 | biostudies-literature
| S-EPMC7464520 | biostudies-literature
| S-EPMC8391056 | biostudies-literature
| S-EPMC8576568 | biostudies-literature
2024-07-11 | GSE251688 | GEO
| S-EPMC3885989 | biostudies-literature
| S-EPMC1474793 | biostudies-literature