Unknown

Dataset Information

0

Potential biomarkers to follow the progression and treatment response of Huntington's disease.


ABSTRACT: Huntington's disease (HD) is a rare genetic disease caused by expanded polyglutamine repeats in the huntingtin protein resulting in selective neuronal loss. Although genetic testing readily identifies those who will be affected, current pharmacological treatments do not prevent or slow down disease progression. A major challenge is the slow clinical progression and the inability to biopsy the affected tissue, the brain, making it difficult to design short and effective proof of concept clinical trials to assess treatment benefit. In this study, we focus on identifying peripheral biomarkers that correlate with the progression of the disease and treatment benefit. We recently developed an inhibitor of pathological mitochondrial fragmentation, P110, to inhibit neurotoxicity in HD. Changes in levels of mitochondrial DNA (mtDNA) and inflammation markers in plasma, a product of DNA oxidation in urine, mutant huntingtin aggregates, and 4-hydroxynonenal adducts in muscle and skin tissues were all noted in HD R6/2 mice relative to wild-type mice. Importantly, P110 treatment effectively reduced the levels of these biomarkers. Finally, abnormal levels of mtDNA were also found in plasma of HD patients relative to control subjects. Therefore, we identified several potential peripheral biomarkers as candidates to assess HD progression and the benefit of intervention for future clinical trials.

SUBMITTER: Disatnik MH 

PROVIDER: S-EPMC5110026 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Potential biomarkers to follow the progression and treatment response of Huntington's disease.

Disatnik Marie-Hélène MH   Joshi Amit U AU   Saw Nay L NL   Shamloo Mehrdad M   Leavitt Blair R BR   Qi Xin X   Mochly-Rosen Daria D  

The Journal of experimental medicine 20161107 12


Huntington's disease (HD) is a rare genetic disease caused by expanded polyglutamine repeats in the huntingtin protein resulting in selective neuronal loss. Although genetic testing readily identifies those who will be affected, current pharmacological treatments do not prevent or slow down disease progression. A major challenge is the slow clinical progression and the inability to biopsy the affected tissue, the brain, making it difficult to design short and effective proof of concept clinical  ...[more]

Similar Datasets

| S-EPMC5037142 | biostudies-literature
| S-EPMC1964868 | biostudies-literature
| S-EPMC7430717 | biostudies-literature
| S-EPMC3346261 | biostudies-literature
| S-EPMC8375100 | biostudies-literature
| S-EPMC3899480 | biostudies-literature
| S-EPMC5033325 | biostudies-literature
| S-EPMC8423954 | biostudies-literature
| S-EPMC9142992 | biostudies-literature