Unknown

Dataset Information

0

Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2.


ABSTRACT: The optical Stark effect is a coherent light-matter interaction describing the modification of quantum states by non-resonant light illumination in atoms, solids and nanostructures. Researchers have strived to utilize this effect to control exciton states, aiming to realize ultra-high-speed optical switches and modulators. However, most studies have focused on the optical Stark effect of only the lowest exciton state due to lack of energy selectivity, resulting in low degree-of-freedom devices. Here, by applying a linearly polarized laser pulse to few-layer ReS2, where reduced symmetry leads to strong in-plane anisotropy of excitons, we control the optical Stark shift of two energetically separated exciton states. Especially, we selectively tune the Stark effect of an individual state with varying light polarization. This is possible because each state has a completely distinct dependence on light polarization due to different excitonic transition dipole moments. Our finding provides a methodology for energy-selective control of exciton states.

SUBMITTER: Sim S 

PROVIDER: S-EPMC5120211 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS<sub>2</sub>.

Sim Sangwan S   Lee Doeon D   Noh Minji M   Cha Soonyoung S   Soh Chan Ho CH   Sung Ji Ho JH   Jo Moon-Ho MH   Choi Hyunyong H  

Nature communications 20161118


The optical Stark effect is a coherent light-matter interaction describing the modification of quantum states by non-resonant light illumination in atoms, solids and nanostructures. Researchers have strived to utilize this effect to control exciton states, aiming to realize ultra-high-speed optical switches and modulators. However, most studies have focused on the optical Stark effect of only the lowest exciton state due to lack of energy selectivity, resulting in low degree-of-freedom devices.  ...[more]

Similar Datasets

| S-EPMC5783952 | biostudies-literature
| S-EPMC5668258 | biostudies-literature
| S-EPMC8795359 | biostudies-literature
| S-EPMC6059897 | biostudies-literature
| S-EPMC9588767 | biostudies-literature
| S-EPMC3935191 | biostudies-other
| S-EPMC4992179 | biostudies-literature
| S-EPMC9263549 | biostudies-literature
| S-EPMC7338549 | biostudies-literature
| S-EPMC6534542 | biostudies-literature