Reduced Hemispheric Asymmetry of White Matter Microstructure in Autism Spectrum Disorder.
Ontology highlight
ABSTRACT: Many past studies have suggested atypical functional and anatomical hemispheric asymmetries in autism spectrum disorder (ASD). However, almost all of these have examined only language-related asymmetries. Here, we conduct a comprehensive investigation of microstructural asymmetries across a large number of fiber tracts in ASD.We used diffusion tensor imaging for a comprehensive investigation of anatomical white matter asymmetries across the entire white matter skeleton, using tract-based spatial statistics in 41 children and adolescents with ASD and a matched group of 44 typically developing (TD) participants.We found significant asymmetries in the TD group, being rightward for fractional anisotropy and leftward for mean diffusivity (with concordant asymmetries for radial and axial diffusivity). These asymmetries were significantly reduced in the group with ASD: in whole brain analysis for fractional anisotropy, and in a region where several major association and projection tracts travel in close proximity within occipital white matter for mean diffusivity, axial diffusivity, and radial diffusivity. No correlations between global white matter asymmetry and age or socio-communicative abilities were detected.Our findings in TD children and adolescents can be interpreted as reflecting different processing modes (more integrative in the right and more specialized in the left hemisphere). These asymmetries and the "division of labor" between hemispheres implied by them appear to be diminished in autism spectrum disorder.
SUBMITTER: Carper RA
PROVIDER: S-EPMC5125511 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA