Unknown

Dataset Information

0

Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.


ABSTRACT: While transformation of normal cells to cancer cells is accompanied with a switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, it is interesting to ask if cancer cells can revert from Warburg effect to OXPHOS. Our previous works suggested that cancer cells reverted to OXPHOS, when they were exposed to lactic acidosis, a common factor in tumor environment. However, the conclusion cannot be drawn unless ATP output from glycolysis and OXPHOS is quantitatively determined. Here we quantitatively measured ATP generation from glycolysis and OXPHOS in 9 randomly selected cancer cell lines. Without lactic acidosis, glycolysis and OXPHOS generated 23.7% - 52.2 % and 47.8% - 76.3% of total ATP, respectively; with lactic acidosis (20 mM lactate with pH 6.7), glycolysis and OXPHOS provided 5.7% - 13.4% and 86.6% - 94.3% of total ATP. We concluded that cancer cells under lactic acidosis reverted from Warburg effect to OXPHOS phenotype.

SUBMITTER: Wu H 

PROVIDER: S-EPMC5130031 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.

Wu Hao H   Ying Minfeng M   Hu Xun X  

Oncotarget 20160601 26


While transformation of normal cells to cancer cells is accompanied with a switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, it is interesting to ask if cancer cells can revert from Warburg effect to OXPHOS. Our previous works suggested that cancer cells reverted to OXPHOS, when they were exposed to lactic acidosis, a common factor in tumor environment. However, the conclusion cannot be drawn unless ATP output from glycolysis and OXPHOS is quantitatively determined. Here we q  ...[more]

Similar Datasets

| S-EPMC6942429 | biostudies-literature
| S-EPMC4963198 | biostudies-literature
2023-10-11 | GSE222377 | GEO
| S-EPMC8725394 | biostudies-literature
| S-EPMC6592291 | biostudies-literature
| S-EPMC6525483 | biostudies-literature
| S-EPMC4838537 | biostudies-literature
| S-EPMC5811548 | biostudies-literature
2012-12-31 | E-GEOD-16816 | biostudies-arrayexpress
| S-EPMC3537610 | biostudies-literature