Unknown

Dataset Information

0

In silico Mapping of Protein Unfolding Mutations for Inherited Disease.


ABSTRACT: The effect of disease-causing missense mutations on protein folding is difficult to evaluate. To understand this relationship, we developed the unfolding mutation screen (UMS) for in silico evaluation of the severity of genetic perturbations at the atomic level of protein structure. The program takes into account the protein-unfolding curve and generates propensities using calculated free energy changes for every possible missense mutation at once. These results are presented in a series of unfolding heat maps and a colored protein 3D structure to show the residues critical to the protein folding and are available for quick reference. UMS was tested with 16 crystal structures to evaluate the unfolding for 1391 mutations from the ProTherm database. Our results showed that the computational accuracy of the unfolding calculations was similar to the accuracy of previously published free energy changes but provided a better scale. Our residue identity control helps to improve protein homology models. The unfolding predictions for proteins involved in age-related macular degeneration, retinitis pigmentosa, and Leber's congenital amaurosis matched well with data from previous studies. These results suggest that UMS could be a useful tool in the analysis of genotype-to-phenotype associations and next-generation sequencing data for inherited diseases.

SUBMITTER: McCafferty CL 

PROVIDER: S-EPMC5131339 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

In silico Mapping of Protein Unfolding Mutations for Inherited Disease.

McCafferty Caitlyn L CL   Sergeev Yuri V YV  

Scientific reports 20161201


The effect of disease-causing missense mutations on protein folding is difficult to evaluate. To understand this relationship, we developed the unfolding mutation screen (UMS) for in silico evaluation of the severity of genetic perturbations at the atomic level of protein structure. The program takes into account the protein-unfolding curve and generates propensities using calculated free energy changes for every possible missense mutation at once. These results are presented in a series of unfo  ...[more]

Similar Datasets

| S-EPMC4421863 | biostudies-literature
| S-EPMC10784225 | biostudies-literature
| S-EPMC3531923 | biostudies-literature
| S-EPMC3558204 | biostudies-literature
| S-EPMC5861491 | biostudies-literature
| S-EPMC3827151 | biostudies-literature
| S-EPMC7285838 | biostudies-literature
| S-EPMC10885371 | biostudies-literature
| S-EPMC1716102 | biostudies-other
| S-EPMC3293109 | biostudies-literature