(Na,?)5[MnO2]13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data.
Ontology highlight
ABSTRACT: (Nax?1?-?x)5[MnO2]13 has been synthesized with x = 0.80?(4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (?2 = 0.690, Rwp = 0.051, Rp = 0.037, RF2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199?(6), b = 2.83987?(6), c = 14.8815?(4)?Å, ? = 105.0925?(16)°, V = 918.90?(4)?Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,?)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn-O distances and Jahn-Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures.
SUBMITTER: Mugnaioli E
PROVIDER: S-EPMC5134763 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA