Unknown

Dataset Information

0

Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).


ABSTRACT: Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq.

SUBMITTER: Langley AR 

PROVIDER: S-EPMC5137433 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

Langley Alexander R AR   Gräf Stefan S   Smith James C JC   Krude Torsten T  

Nucleic acids research 20160901 21


Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequen  ...[more]

Similar Datasets

| S-EPMC3446301 | biostudies-literature
2017-11-23 | GSE107248 | GEO
| S-EPMC406463 | biostudies-literature
| S-EPMC1817633 | biostudies-literature
| S-EPMC6044726 | biostudies-literature
| S-EPMC5570034 | biostudies-literature
| S-EPMC1630417 | biostudies-literature
| S-EPMC4039536 | biostudies-literature
2014-06-01 | E-GEOD-55155 | biostudies-arrayexpress
| S-EPMC4454516 | biostudies-literature