Unknown

Dataset Information

0

The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila.


ABSTRACT: The basic mechanisms underlying noxious cold perception are not well understood. We developed Drosophila assays for noxious cold responses. Larvae respond to near-freezing temperatures via a mutually exclusive set of singular behaviors-in particular, a full-body contraction (CT). Class III (CIII) multidendritic sensory neurons are specifically activated by cold and optogenetic activation of these neurons elicits CT. Blocking synaptic transmission in CIII neurons inhibits CT. Genetically, the transient receptor potential (TRP) channels Trpm, NompC, and Polycystic kidney disease 2 (Pkd2) are expressed in CIII neurons, where each is required for CT. Misexpression of Pkd2 is sufficient to confer cold responsiveness. The optogenetic activation level of multimodal CIII neurons determines behavioral output, and visualization of neuronal activity supports this conclusion. Coactivation of cold- and heat-responsive sensory neurons suggests that the cold-evoked response circuitry is dominant. Our Drosophila model will enable a sophisticated molecular genetic dissection of cold nociceptive genes and circuits.

SUBMITTER: Turner HN 

PROVIDER: S-EPMC5140760 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila.

Turner Heather N HN   Armengol Kevin K   Patel Atit A AA   Himmel Nathaniel J NJ   Sullivan Luis L   Iyer Srividya Chandramouli SC   Bhattacharya Surajit S   Iyer Eswar Prasad R EPR   Landry Christian C   Galko Michael J MJ   Cox Daniel N DN  

Current biology : CB 20161103 23


The basic mechanisms underlying noxious cold perception are not well understood. We developed Drosophila assays for noxious cold responses. Larvae respond to near-freezing temperatures via a mutually exclusive set of singular behaviors-in particular, a full-body contraction (CT). Class III (CIII) multidendritic sensory neurons are specifically activated by cold and optogenetic activation of these neurons elicits CT. Blocking synaptic transmission in CIII neurons inhibits CT. Genetically, the tra  ...[more]

Similar Datasets

| S-EPMC7306681 | biostudies-literature
| S-EPMC2933178 | biostudies-literature
| S-EPMC8177887 | biostudies-literature
| S-EPMC8781072 | biostudies-literature
| S-EPMC3746866 | biostudies-literature
| S-EPMC5777822 | biostudies-literature
2010-10-06 | E-MEXP-2929 | biostudies-arrayexpress
| S-EPMC3014052 | biostudies-literature
| S-EPMC4987839 | biostudies-literature
| S-EPMC3048163 | biostudies-literature