Ontology highlight
ABSTRACT: Importance
Protein kinases of Plasmodium falciparum are being actively pursued as drug targets to treat malaria. However, compensatory mechanisms may reverse the drug activity against a kinase. In this study, we show that replacement of the wild-type threonine gatekeeper residue with methionine reduces the transphosphorylation activity of CDPK1. Mutant parasites with methionine gatekeeper residue compensate the reduced activity of CDPK1 through the action of PKG possibly by upregulation of CDPK6 or some other kinase. This study highlights that targeting one enzyme may lead to changes in transcript expression of other kinases that compensate for its function and may select for mutants that are less dependent on the target enzyme activity. Thus, inhibiting two kinases is a better strategy to protect the antimalarial activity of each, similar to artemisinin combination therapy or malarone (atovaquone and proguanil).
SUBMITTER: Bansal A
PROVIDER: S-EPMC5142624 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
mBio 20161206 6
We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs). Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1). The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, w ...[more]