ABSTRACT: Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus. In contrast, stallions not possessing the CD3+ T lymphocyte susceptible phenotype are at less risk of becoming long-term virus carriers. A genome wide association study (GWAS) using the Illumina Equine SNP50 chip revealed that the ability of EAV to infect CD3+ T lymphocytes and establish long-term carrier status in stallions correlated with a region within equine chromosome 11. Here we identified the gene and mutations responsible for these phenotypes. Specifically, the work implicated three allelic variants of the equine orthologue of CXCL16 (EqCXCL16) that differ by four non-synonymous nucleotide substitutions (XM_00154756; c.715 A ? T, c.801 G ? C, c.804 T ? A/G, c.810 G ? A) within exon 1. This resulted in four amino acid changes with EqCXCL16S (XP_001504806.1) having Phe, His, Ile and Lys as compared to EqCXL16R having Tyr, Asp, Phe, and Glu at 40, 49, 50, and 52, respectively. Two alleles (EqCXCL16Sa, EqCXCL16Sb) encoded identical protein products that correlated strongly with long-term EAV persistence in stallions (P<0.000001) and are required for in vitro CD3+ T lymphocyte susceptibility to EAV infection. The third (EqCXCL16R) was associated with in vitro CD3+ T lymphocyte resistance to EAV infection and a significantly lower probability for establishment of the long-term carrier state (viral persistence) in the male reproductive tract. EqCXCL16Sa and EqCXCL16Sb exert a dominant mode of inheritance. Most importantly, the protein isoform EqCXCL16S but not EqCXCL16R can function as an EAV cellular receptor. Although both molecules have equal chemoattractant potential, EqCXCL16S has significantly higher scavenger receptor and adhesion properties compared to EqCXCL16R.