Unknown

Dataset Information

0

Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study.


ABSTRACT:

Background and objective

This study aimed to develop a late-life dementia prediction model using a novel validated supervised machine learning method, the Disease State Index (DSI), in the Finnish population-based CAIDE study.

Methods

The CAIDE study was based on previous population-based midlife surveys. CAIDE participants were re-examined twice in late-life, and the first late-life re-examination was used as baseline for the present study. The main study population included 709 cognitively normal subjects at first re-examination who returned to the second re-examination up to 10 years later (incident dementia n?=?39). An extended population (n?=?1009, incident dementia 151) included non-participants/non-survivors (national registers data). DSI was used to develop a dementia index based on first re-examination assessments. Performance in predicting dementia was assessed as area under the ROC curve (AUC).

Results

AUCs for DSI were 0.79 and 0.75 for main and extended populations. Included predictors were cognition, vascular factors, age, subjective memory complaints, and APOE genotype.

Conclusion

The supervised machine learning method performed well in identifying comprehensive profiles for predicting dementia development up to 10 years later. DSI could thus be useful for identifying individuals who are most at risk and may benefit from dementia prevention interventions.

SUBMITTER: Pekkala T 

PROVIDER: S-EPMC5147511 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study.

Pekkala Timo T   Hall Anette A   Lötjönen Jyrki J   Mattila Jussi J   Soininen Hilkka H   Ngandu Tiia T   Laatikainen Tiina T   Kivipelto Miia M   Solomon Alina A  

Journal of Alzheimer's disease : JAD 20170101 3


<h4>Background and objective</h4>This study aimed to develop a late-life dementia prediction model using a novel validated supervised machine learning method, the Disease State Index (DSI), in the Finnish population-based CAIDE study.<h4>Methods</h4>The CAIDE study was based on previous population-based midlife surveys. CAIDE participants were re-examined twice in late-life, and the first late-life re-examination was used as baseline for the present study. The main study population included 709  ...[more]

Similar Datasets

| S-EPMC8563624 | biostudies-literature
| S-EPMC2889937 | biostudies-literature
| S-EPMC6753605 | biostudies-literature
| S-EPMC2715571 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC3503367 | biostudies-literature
| S-EPMC10502833 | biostudies-literature
| S-EPMC4683603 | biostudies-literature
| S-EPMC4223108 | biostudies-literature
| S-EPMC6732211 | biostudies-literature