Inhibition of de novo Methyltransferase 3B is a Potential Therapy for Hepatocellular Carcinoma.
Ontology highlight
ABSTRACT: BACKGROUND:Aberrant epigenetic patterns, including inactivation of tumor suppressor genes due to DNA methylation, have been described in many human cancers. Epigenetic therapeutic is a new and rapidly developing area of tumor treatment because DNA methyltransferase (DNMT) inhibitors can reverse its changes. We attempted to identify potential approach for epigenetic therapy of hepatocellular carcinoma. METHODS:We knocked down the expression of DNMT 1 or DNMT 3B by siRNA, and inhibited DNA methyltranferases by 5-Aza-2'-deoxycytidine. We used high-density oligonucleotide gene expression microarrays to examine the induced genes in human hepatocellular carcinoma cell line SMMC-7721 after suppressing DNA methyltranferases. The 5' ends of up-regulated genes were analyzed by BLAST database to determine whether they have promoter CpG islands, and then the identical induced genes were compared among different inhibition of DNA methyltranferases. RESULTS:Our results show that 9 genes were found to be over expressed by more than two-fold induced by DNMT1 siRNA and 5-Aza-CdR, and 30 genes were found to be over expressed by more than two-fold induced by DNMT3B siRNA and 5-Aza-CdR in SMMC-7721. Among them, 76.6% up-regulated genes conjectural contained 5' CpG islands. The DNMT3B siRNA could induce more genes identical to demethylation agent in SMMC-7721. CONCLUSIONS:DNMT3B might be a new potential target for therapy of hepatocellular carcinoma.
SUBMITTER: Fan H
PROVIDER: S-EPMC5154213 | biostudies-literature | 2008 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA