Unknown

Dataset Information

0

Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex.


ABSTRACT: Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M1). Here, we aimed to test the plasticity-inducing capabilities of a novel protocol that merged TBS and QPS. 360 bursts of quadri-pulse TBS (qTBS) were continuously given to M1 at 90% of active motor threshold (1440 full-sine pulses). In a first experiment, stimulation frequency of each burst was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP-qTBS at 666 Hz induced an increase in mean AP-MEP amplitudes. At a burst frequency of 200 Hz, PA-qTBS and AP-qTBS produced an increase in cortico-spinal excitability outlasting for at least 60 minutes in PA- and AP-MEP amplitudes, respectively. Continuous qTBS at 666 Hz or 200 Hz can induce lasting changes in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1.

SUBMITTER: Jung NH 

PROVIDER: S-EPMC5158069 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex.

Jung Nikolai H NH   Gleich Bernhard B   Gattinger Norbert N   Hoess Catrina C   Haug Carolin C   Siebner Hartwig R HR   Mall Volker V  

PloS one 20161215 12


Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M1). Here, we aimed to test the plasticity-inducing capabilities of a novel protocol that merged TBS and QPS. 360 bursts of quadri-pulse TBS (qTBS) were continuously given to M1 at 90% of active motor t  ...[more]

Similar Datasets

| S-EPMC8273174 | biostudies-literature
| S-EPMC8062542 | biostudies-literature
| S-EPMC9161680 | biostudies-literature
| S-EPMC9290267 | biostudies-literature
| S-EPMC4961448 | biostudies-literature
| S-EPMC5955003 | biostudies-literature
| S-EPMC8197744 | biostudies-literature
| S-EPMC6400028 | biostudies-literature
| S-EPMC7828923 | biostudies-literature
| S-EPMC5449396 | biostudies-literature