Project description:Systemic treatments for advanced hepatocellular carcinoma (HCC) are evolving rapidly and several multi-targeted tyrosine kinase inhibitors have demonstrated a survival advantage over best supportive care. Despite these treatment advances, the majority of HCC patients will progress on tyrosine kinase inhibitor therapy. Preclinical data indicate that interference with immune checkpoint molecules results in HCC growth suppression. Several clinical trials applying monoclonal antibodies to immune checkpoint molecules have demonstrated durable antitumor activity in advanced HCC patients. As such, pivotal clinical trials are now in progress to assess if these agents will alter the natural history of the disease and further extend the overall survival of advanced HCC patients. This manuscript will review the current status of immune checkpoint blockade in patients with advanced HCC.
Project description:Hepatocellular carcinoma (HCC) is the fifth most common cancer, and its incidence is rapidly increasing in North America and Western Europe as well as South-East Asia. Patients with advanced stage HCC have very poor outcomes; therefore, the discovery of new innovative approaches is urgently needed. Cancer immunotherapy has become a game-changer and revolutionized cancer treatment. A comprehensive understanding of tumor-immune interactions led to the development of immune checkpoint inhibitors (ICIs) as new therapeutic tools, which have been used with great success. Targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T lymphocyte-associated protein-4 (CTLA-4) reinvigorates anti-tumor immunity by restoring exhausted T cells. Despite their effectiveness in several types of cancer, of the many immune suppressive mechanisms limit the efficacy of ICI monotherapy. Radiation therapy (RT) is an essential local treatment modality for a broad range of malignancies, and it is currently gaining extensive attention as a promising combination partner with ICIs because of its ability to trigger immunogenic cell death. The efficacy of combination approaches using RT and ICIs has been well documented in numerous preclinical and clinical studies on various types of cancers but not HCC. The application of ICIs has now expanded to HCC, and RT is recognized as a promising modality in HCC. This review will highlight the current roles of PD-1 and CTLA-4 therapies and their combination with RT in the treatment of cancers, including HCC. In addition, this review will discuss the future perspectives of the combination of ICIs and RT in HCC treatment.
Project description:In the immune oncology era, the clinical efficacy of immune checkpoint inhibitors (ICIs) against most solid cancers is well known. In hepatocellular carcinoma, the recent success of combination therapy with targeting agents has accelerated the search for novel combination strategies. Radiotherapy (RT), an attractive modality, can be combined with ICIs, which act as strong modulators of the tumor immune microenvironment. Herein, we discuss immune modulation caused by radiation and the current trials of RT-ICI combination treatment as well as future perspectives.
Project description:Although many approaches have been developed for the treatment of hepatocellular carcinoma (HCC) that has both high incidence and high mortality especially in Asian countries, the prognosis of HCC patients is still dismal. Immunotherapy, particularly immune checkpoint inhibitors show encouraging efficacy and have already been widely applied in clinic. However, in contrast to traditional therapies, immunotherapy brings many challenges when using in a real world, including biomarker discovery, response evaluation, adverse event treatment, etc. In this review, we proposed some important and intractable issues in current clinical practice regarding the strategy of immune checkpoint blockade, collected current evidence, and discuss the critical challenges and possible approaches to a bright future.
Project description:Immune checkpoint blockade has recently emerged as a promising therapeutic approach for various malignancies including hepatocellular carcinoma (HCC). Preclinical and clinical studies have shown the potential benefit of modulating the immunogenicity of HCC. In addition, recent advances in tumor immunology have broadened our understanding of the complex mechanism of immune evasion. In this review we summarize the current knowledge on HCC immunology and discuss the potential of immune checkpoint blockade as a novel HCC therapy from the basic, translational, and clinical perspectives.
Project description:The systemic treatment landscape for advanced hepatocellular carcinoma (HCC) has experienced tremendous paradigm shift towards targeting tumor microenvironment (TME) following recent trials utilizing immune checkpoint blockade (ICB). However, limited success of ICB as monotherapy mandates the evaluation of combination strategies incorporating immunotherapy for improved clinical efficacy. Radiotherapy (RT) is an integral component in treatment of solid cancers, including HCC. Radiation mediates localized tumor killing and TME modification, thereby potentiating the action of ICB. Several preclinical and clinical studies have explored the efficacy of combining RT and ICB in HCC with promising outcomes. Greater efforts are required in discovery and understanding of novel combination strategies to maximize clinical benefit with tolerable adverse effects. This current review provides a comprehensive assessment of RT and ICB in HCC, their respective impact on TME, the rationale for their synergistic combination, as well as the current potential biomarkers available to predict clinical response. We also speculate on novel future strategies to further enhance the efficacy of this combination.
Project description:More than half of new cases of hepatocellular carcinoma (HCC) and associated deaths occurring annually worldwide are recorded in China. Chinese patients with HCC exhibit special characteristics in terms of etiology, leading to differences in prognosis versus Western patients. In recent years, several angiogenesis inhibitors were approved, and immune checkpoint blockers (ICBs) were recommended as second-line therapy for advanced HCC. In addition, the recent success of a combination of atezolizumab with bevacizumab signals resulted in an essential change in the first-line treatment of HCC. We investigated the characteristics of patients with HCC in China and summarized the rapidly emerging relevant clinical data, which relate to the prospects and challenges associated with the use of ICBs in this setting. We further evaluated the efficacy of ICBs in Chinese patients with HCC based on data obtained from global trials, and discussed possible factors influencing the effectiveness of ICBs in patients with HCC in China. Immunotherapy offers new options for the treatment of advanced HCC, though responses varied between patients. Currently, there is a need to discover specific biomarkers for the accurate identification of patients who would more likely benefit from immunotherapy. Furthermore, investigation of patient characteristics in different countries is necessary to provide a clinical practice basis and reference value for the diagnosis and treatment of HCC.
Project description:HCC usually arises from a chronic inflammation background, driven by several factors including fatty liver, HBV/HCV viral infection and metabolic syndrome. Systemic treatment for advanced HCC remains disappointing due to its strong resistance to chemotherapy and even to tyrosine kinase inhibitors (TKIs). Recently, the use of ICI therapy has revolutionized the systemic treatment of advanced HCC. For the first time, clinical trials testing ICIs, anti-CTLA-4 and anti-PD1/PDL1 reported a survival benefit in patients with sorafenib resistance. However, it took four more years to find the right combination regimen to use ICI in combination with the anti-angiogenic agent bevacizumab to substantially prolong overall survival (OS) of patients with advanced HCC after sorafenib. This review provides a comprehensive history of ICI therapy in HCC, up-to-date information on the latest ICI clinical trials, and discusses the recent development of novel ICIs that would potentially lead to a new checkpoint blockade therapy for advanced HCC.
Project description:ImportanceFor more than a decade, sorafenib has been the only systemic treatment option for patients with advanced hepatocellular carcinoma (HCC). However, rapid progress over the past few years led to approval of other angiogenesis inhibitors and several immune checkpoint blockers (ICBs) that have been added to the treatment armamentarium for advanced HCC. Moreover, the recent success of a combination of bevacizumab with atezolizumab signals an important change in the front-line treatment of HCC.ObservationsThis review summarizes rapidly emerging clinical data on the promise and challenges of implementing ICBs in HCC and discusses the unmet need of biomarkers to predict response or resistance to therapy. Two strategies to target immunosuppression in tumors are also discussed: one proven (vascular endothelial growth factor pathway inhibition) and one currently under investigation (transforming growth factor-β pathway inhibition). The rationale and preliminary evidence on how their inhibition may reprogram the immunosuppressive milieu and enhance the efficacy of ICBs in HCC are reviewed.Conclusion and relevanceThe recent successes and failures of angiogenesis inhibitors and ICBs, alone and in combination, have provided important insights into how to implement this novel systemic therapy in HCC and led to new avenues to enhance immunotherapy efficacy in this disease.
Project description:The disease burden related to hepatocellular carcinoma (HCC) is increasing. Most HCC patients are diagnosed at the advanced stage and multikinase inhibitors have been the only treatment choice for them. Recently, the approval of immune checkpoint inhibitors (ICIs) has provided a new therapeutic strategy for HCC. It is noteworthy that the positive outcomes of the phase III clinical trial IMBrave150 [atezolizumab (anti-programmed cell death ligand 1 antibody) combined with bevacizumab (anti-vascular endothelial growth factor monoclonal antibody)], showed that overall survival and progression-free survival were significantly better with sorafenib. This combination therapy has become the new standard therapy for advanced HCC and has also attracted more attention in the treatment of HCC with anti-angiogenesis-immune combination therapy. Currently, the synergistic antitumor efficacy of this combination has been shown in many preclinical and clinical studies. In this review, we discuss the mechanism and clinical application of anti-angiogenics and immunotherapy in HCC, outline the relevant mechanism and rationality of the combined application of anti-angiogenics and ICIs, and point out the existing challenges of the combination therapy.