Unknown

Dataset Information

0

Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication.


ABSTRACT: Human malignancies overcome replicative senescence either by activating the reverse-transcriptase telomerase or by utilizing a homologous recombination-based mechanism, referred to as alternative lengthening of telomeres (ALT). In budding yeast, ALT exhibits features of break-induced replication (BIR), a repair pathway for one-ended DNA double-strand breaks (DSBs) that requires the non-essential subunit Pol32 of DNA polymerase delta and leads to conservative DNA replication. Here, we examined whether ALT in human cancers also exhibits features of BIR A telomeric fluorescence in situ hybridization protocol involving three consecutive staining steps revealed the presence of conservatively replicated telomeric DNA in telomerase-negative cancer cells. Furthermore, depletion of PolD3 or PolD4, two subunits of human DNA polymerase delta that are essential for BIR, reduced the frequency of conservatively replicated telomeric DNA ends and led to shorter telomeres and chromosome end-to-end fusions. Taken together, these results suggest that BIR is associated with conservative DNA replication in human cells and mediates ALT in cancer.

SUBMITTER: Roumelioti FM 

PROVIDER: S-EPMC5167343 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication.

Roumelioti Fani-Marlen FM   Sotiriou Sotirios K SK   Katsini Vasiliki V   Chiourea Maria M   Halazonetis Thanos D TD   Gagos Sarantis S  

EMBO reports 20161019 12


Human malignancies overcome replicative senescence either by activating the reverse-transcriptase telomerase or by utilizing a homologous recombination-based mechanism, referred to as alternative lengthening of telomeres (ALT). In budding yeast, ALT exhibits features of break-induced replication (BIR), a repair pathway for one-ended DNA double-strand breaks (DSBs) that requires the non-essential subunit Pol32 of DNA polymerase delta and leads to conservative DNA replication. Here, we examined wh  ...[more]

Similar Datasets

| S-EPMC5615184 | biostudies-literature
| S-EPMC6366628 | biostudies-literature
| S-EPMC5378164 | biostudies-literature
| S-EPMC3746906 | biostudies-other
| S-EPMC3804423 | biostudies-literature
| S-EPMC4199488 | biostudies-literature
| S-EPMC4599288 | biostudies-literature
| S-EPMC2175364 | biostudies-literature
| S-EPMC8294677 | biostudies-literature
| S-EPMC7956399 | biostudies-literature