Unknown

Dataset Information

0

Alternative Lengthening of Telomeres through Two Distinct Break-Induced Replication Pathways.


ABSTRACT: Alternative lengthening of telomeres (ALT) is a telomerase-independent but recombination-dependent pathway that maintains telomeres. Here, we describe an assay to visualize ALT-mediated telomeric DNA synthesis in ALT-associated PML bodies (APBs) without DNA-damaging agents or replication inhibitors. Using this assay, we find that ALT occurs through two distinct mechanisms. One of the ALT mechanisms requires RAD52, a protein implicated in break-induced DNA replication (BIR). We demonstrate that RAD52 directly promotes telomeric D-loop formation in vitro and is required for maintaining telomeres in ALT-positive cells. Unexpectedly, however, RAD52 is dispensable for C-circle formation, a hallmark of ALT. In RAD52-knockout ALT cells, C-circle formation and RAD52-independent ALT DNA synthesis gradually increase as telomeres are shortened, and these activities are dependent on BLM and BIR proteins POLD3 and POLD4. These results suggest that ALT occurs through a RAD52-dependent and a RAD52-independent BIR pathway, revealing the bifurcated framework and dynamic nature of this process.

SUBMITTER: Zhang JM 

PROVIDER: S-EPMC6366628 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alternative Lengthening of Telomeres through Two Distinct Break-Induced Replication Pathways.

Zhang Jia-Min JM   Yadav Tribhuwan T   Ouyang Jian J   Lan Li L   Zou Lee L  

Cell reports 20190101 4


Alternative lengthening of telomeres (ALT) is a telomerase-independent but recombination-dependent pathway that maintains telomeres. Here, we describe an assay to visualize ALT-mediated telomeric DNA synthesis in ALT-associated PML bodies (APBs) without DNA-damaging agents or replication inhibitors. Using this assay, we find that ALT occurs through two distinct mechanisms. One of the ALT mechanisms requires RAD52, a protein implicated in break-induced DNA replication (BIR). We demonstrate that R  ...[more]

Similar Datasets

| S-EPMC5615184 | biostudies-literature
| S-EPMC5167343 | biostudies-literature
| S-EPMC5378164 | biostudies-literature
| S-EPMC10516625 | biostudies-literature
| S-EPMC4599288 | biostudies-literature
| S-EPMC10783591 | biostudies-literature
| S-EPMC8294677 | biostudies-literature
| S-EPMC6785246 | biostudies-literature
| S-EPMC6506250 | biostudies-literature
| S-EPMC6986873 | biostudies-literature