Unknown

Dataset Information

0

Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies.


ABSTRACT: Influenza A virus subtype H5N1 has been a public health concern for almost 20years due to its potential ability to become transmissible among humans. Phase I and II clinical trials have assessed safety, reactogenicity and immunogenicity of inactivated influenza A/H5N1 virus vaccines. A shortage of vaccine is likely to occur during the first months of a pandemic. Hence, determining whether to give one dose to more people or two doses to fewer people to best protect the population is essential. We use hemagglutination-inhibition antibody titers as an immune correlate for avian influenza vaccines. Using an established relationship to obtain a theoretical vaccine efficacy from immunogenicity data from thirteen arms of six phase I and phase II clinical trials of inactivated influenza A/H5N1 virus vaccines, we assessed: (1) the proportion of theoretical vaccine efficacy achieved after a single dose (defined as primary response level), and (2) whether theoretical efficacy increases after a second dose, with and without adjuvant. Participants receiving vaccine with AS03 adjuvant had higher primary response levels (range: 0.48-0.57) compared to participants receiving vaccine with MF59 adjuvant (range: 0.32-0.47), with no observed trends in primary response levels by antigen dosage. After the first and second doses, vaccine with AS03 at dosage levels 3.75, 7.5 and 15mcg had the highest estimated theoretical vaccine efficacy: Dose (1) 45% (95% CI: 36-57%), 53% (95% CI: 42-63%) and 55% (95% CI: 44-64%), respectively and Dose (2) 93% (95% CI: 89-96%), 97% (95% CI: 95-98%) and 97% (95% CI: 96-100%), respectively. On average, the estimated theoretical vaccine efficacy of lower dose adjuvanted vaccines (AS03 and MF59) was 17% higher than that of higher dose unadjuvanted vaccines, suggesting that including an adjuvant is dose-sparing. These data indicate adjuvanted inactivated influenza A/H5N1 virus vaccine produces high theoretical efficacy after two doses to protect individuals against a potential avian influenza pandemic.

SUBMITTER: Feldstein LR 

PROVIDER: S-EPMC5168719 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies.

Feldstein Leora R LR   Matrajt Laura L   Elizabeth Halloran M M   Keitel Wendy A WA   Longini Ira M IM  

Vaccine 20160620 33


Influenza A virus subtype H5N1 has been a public health concern for almost 20years due to its potential ability to become transmissible among humans. Phase I and II clinical trials have assessed safety, reactogenicity and immunogenicity of inactivated influenza A/H5N1 virus vaccines. A shortage of vaccine is likely to occur during the first months of a pandemic. Hence, determining whether to give one dose to more people or two doses to fewer people to best protect the population is essential. We  ...[more]

Similar Datasets

| S-EPMC2516931 | biostudies-literature
| S-EPMC4324222 | biostudies-literature
| S-EPMC3417327 | biostudies-literature
| S-EPMC4598805 | biostudies-literature
| S-EPMC5682266 | biostudies-literature
| S-EPMC3022490 | biostudies-literature
| S-EPMC7598126 | biostudies-literature
| S-EPMC2730950 | biostudies-literature
| S-EPMC2669169 | biostudies-other
| S-EPMC5331804 | biostudies-other