PRKAR1A is a functional tumor suppressor inhibiting ERK/Snail/E-cadherin pathway in lung adenocarcinoma.
Ontology highlight
ABSTRACT: Protein Kinase cAMP-Dependent Regulatory Type I Alpha (PRKAR1A) is a tissue-specific extinguisher that transduces a signal through phosphorylation of different target proteins. Loss of PRKAR1A was frequently observed in endocrine neoplasia and stromal cell tumors. However, a few cases were seen in epithelial tumors. Previously, we first found that PRKAR1A was downregulated in lung adenocarcinoma patients. Thus, the present study aimed to clarify its clinical implication and biological function as a tumor suppressor in lung adenocarcinoma. The low levels of PRKAR1A transcript were correlated with tumor progression and poor overall survival. The re-expression of PRKAR1A in H1299 cells suppressed the tumor cell proliferation and migration; stable knockdown (KD) of PRKAR1A in A549 cells enhanced this function both in vitro and in vivo. Moreover, KD of PRKAR1A in A549 cells promoted the statistical colonization of circulating tumor cells to the lungs in nude mice. These effects by PRKAR1A were attributed to inhibiting E-cadherin expression. Elevated E-cadherin significantly suppressed the PRKAR1A-KD induced cell proliferation and migration. Most notably, deletion of PRKAR1A inhibited E-cadherin by activating ERK/Snail signaling. In conclusion, PRKAR1A was a potent suppressor, and through the inhibition of PRKAR1A-ERK-Snail-E-cadherin axis could serve as a potential therapeutic target.
SUBMITTER: Wang S
PROVIDER: S-EPMC5171641 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA