Ontology highlight
ABSTRACT: Importance
The recent discovery that multiple serotypes encode S-CDT, which was previously established as an important virulence factor for serotype Typhi, suggested that this toxin may also contribute to the outcome of infection with nontyphoidal serotypes. In this study, we demonstrate that at a cellular level, S-CDT significantly alters the outcome of infection by inducing DNA damage which is associated with a cell cycle arrest and activation of the host cell's DDR. Importantly, these results contribute valuable information for assessing the public health implications of S-CDT in infections with NTS serotypes. Our data suggest that infection with Salmonella strains that encode S-CDT has the potential to result in DNA damage, which may contribute to long-term sequelae.
SUBMITTER: Miller RA
PROVIDER: S-EPMC5181781 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
mBio 20161220 6
Select nontyphoidal Salmonella enterica (NTS) serotypes were recently found to encode the Salmonella cytolethal distending toxin (S-CDT), an important virulence factor for serotype Typhi, the causative agent of typhoid fever. Using a PCR-based assay, we determined that among 21 NTS serotypes causing the majority of food-borne salmonellosis cases in the United States, genes encoding S-CDT are conserved in isolates representing serotypes Javiana, Montevideo, and Oranienburg but that among serotype ...[more]