Unknown

Dataset Information

0

The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron.


ABSTRACT: Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule.

SUBMITTER: Hennings JC 

PROVIDER: S-EPMC5198284 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications


Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-  ...[more]

Similar Datasets

| S-EPMC5004338 | biostudies-literature
| S-EPMC8564913 | biostudies-literature
| S-EPMC2556891 | biostudies-literature
| S-EPMC23874 | biostudies-literature
| S-EPMC6483157 | biostudies-literature
| S-EPMC7834019 | biostudies-literature
| S-EPMC3475746 | biostudies-literature
| S-EPMC6672451 | biostudies-literature
| S-EPMC4156679 | biostudies-literature
| S-EPMC8222222 | biostudies-literature